【題目】已知函數(shù),對于函數(shù)有下述四個結(jié)論:
①函數(shù)在其定義域上為增函數(shù);
②對于任意的,都有成立;
③有且僅有兩個零點;
④若在點處的切線也是的切線,則必是零點.
其中所有正確的結(jié)論序號是( )
A.①②③B.①②C.②③④D.②③
【答案】C
【解析】
利用特殊值法可判斷①的正誤;推導(dǎo)出當時,從而可判斷②的正誤;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,結(jié)合零點存在定理可判斷③的正誤;利用導(dǎo)數(shù)的幾何意義得出等式,進而可判斷④的正誤.綜合可得出結(jié)論.
,,
所以,函數(shù)在其定義域上不是增函數(shù),①錯;
∵當時,則,因此成立,②對;
函數(shù)的定義域為,且,
所以,函數(shù)在區(qū)間和上均為增函數(shù),
,,
,即函數(shù)在區(qū)間上有且僅有個零點.
,,,
所以,函數(shù)區(qū)間上有且僅有個零點.
因此,函數(shù)有且僅有兩個零點,③對;
在點處的切線的方程.
又也是的切線,設(shè)其切點為,則的斜率,
從而直線的斜率,,即切點為,
又點在上,,
即必是函數(shù)的零點,④對.
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,平面平面,底面為梯
形, , , .且與均為正三角形, 為的中點,
為重心.
(1)求證: 平面;
(2)求異面直線與的夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
當時,求函數(shù)的單調(diào)增區(qū)間;
若函數(shù)在上是增函數(shù),求實數(shù)a的取值范圍;
若,且對任意,,,都有,求實數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體中,點在線段上運動,則下列判斷中正確的是( )
①平面平面;
②平面;
③異面直線與所成角的取值范圍是;
④三棱錐的體積不變.
A. ①② B. ①②④ C. ③④ D. ①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)以往的經(jīng)驗,某工程施工期間的降水量(單位:)對工期的影響如下表:
降水量 | ||||
工期延誤天數(shù) |
歷年氣象資料表明,該工程施工期間降水量小于、、的概率分別為、、,求:
(1)在降水量至少是的條件下,工期延誤不超過天的概率;
(2)工期延誤天數(shù)的均值與方差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有下列命題中錯誤的是( )
A.是函數(shù)的極值點;
B.若,則;
C.函數(shù)的最小值為2;
D.函數(shù)的定義域為[1,2],則函數(shù)的定義域為[2,4].
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)在點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某汽車品牌為了了解客戶對于其旗下的五種型號汽車的滿意情況,隨機抽取了一些客戶進行回訪,調(diào)查結(jié)果如下表:
汽車型號 | I | II | III | IV | V |
回訪客戶(人數(shù)) | 250 | 100 | 200 | 700 | 350 |
滿意率 | 0.5 | 0.3 | 0.6 | 0.3 | 0.2 |
滿意率是指:某種型號汽車的回訪客戶中,滿意人數(shù)與總?cè)藬?shù)的比值.
(Ⅰ) 從III型號汽車的回訪客戶中隨機選取1人,則這個客戶不滿意的概率為________;
(Ⅱ) 從所有的客戶中隨機選取1個人,估計這個客戶滿意的概率;
(Ⅲ) 汽車公司擬改變投資策略,這將導(dǎo)致不同型號汽車的滿意率發(fā)生變化.假設(shè)表格中只有兩種型號汽車的滿意率數(shù)據(jù)發(fā)生變化,那么哪種型號汽車的滿意率增加0.1,哪種型號汽車的滿意率減少0.1,使得獲得滿意的客戶人數(shù)與樣本中的客戶總?cè)藬?shù)的比值達到最大?(只需寫出結(jié)論)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com