【題目】直線l過(guò)點(diǎn)P(﹣2,1).
(1)若直線l與直線x+2y=1平行,求直線l的方程;
(2)若直線l與直線x+2y=1垂直,求直線l的方程.
【答案】
(1)解:因?yàn)榕c直線x+2y=1平行,所以可將直線設(shè)為x+2y=c,
再將點(diǎn)P(﹣2,1)代入解得c=0,即所求直線方程是x+2y=0
(2)解:因?yàn)榕c直線x+2y=1垂直,所以可將直線設(shè)為2x﹣y=m,
再將點(diǎn)P(﹣2,1)代入,解得m=﹣5,即得直線方程2x﹣y=﹣5.
【解析】(1)若直線l與與直線x+2y=1平行,所以可將直線設(shè)為x+2y=c,再將點(diǎn)P(﹣2,1)代入求出c值,可得答案;(2)若直線l與直線x+2y=1垂直,所以可將直線設(shè)為2x﹣y=m,再將點(diǎn)P(﹣2,1)代入求出m值,可得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)a1 , a2 , a3 , a4 , a5的標(biāo)準(zhǔn)差為2,則數(shù)3a1﹣2,3a2﹣2,3a3﹣2,3a4﹣2,3a5﹣2的方差為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果函數(shù)f(x)=sin(2x+θ),函數(shù)f(x)+f'(x)為奇函數(shù),f'(x)是f(x)的導(dǎo)函數(shù),則tanθ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知α,β,γ是三個(gè)不同的平面,α∩γ=m,β∩γ=n.那么( )
A.若m⊥n,則α⊥β
B.若α⊥β,則m⊥n
C.若m∥n,則α∥β
D.若α∥β,則m∥n
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將你手中的筆想放哪就放哪,愿咋放就咋放,總能在教室地面上畫一條直線,使之與筆所在的直線( )
A.平行
B.相交
C.異面
D.垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求經(jīng)過(guò)圓x2+2x+y2=0的圓心G,且與直線x+y=0垂直的直線方程是( )
A.x﹣y+1=0
B.x﹣y﹣1=0
C.x+y﹣1=0
D.x+y+1=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題“若x2<4,則﹣2<x<2”的逆否命題是( )
A.若x2≥4,則x≥2或x≤﹣2
B.若﹣2<x<2,則x2<4
C.若x>2或x<﹣2,則x2>4
D.若x≥2,或x≤﹣2,則x2≥4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com