把函數(shù)y=sinx的圖象按下列順序變換:
①圖象上點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)
②圖象向右平移個(gè)單位,得到的函數(shù)y=g(x)的解析式為( )
A.g(x)=sin(2x-
B.g(x)=sin(2x-
C.g(x)=sin(x-
D.g(x)=sin(x-
【答案】分析:按①變換得到y(tǒng)=sinx的圖象,再按②變換得到g(x)=sin(x-)的圖象,從而得出結(jié)論.
解答:解:把函數(shù)y=sinx的圖象上點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)得到y(tǒng)=sinx的圖象,
再把圖象向右平移個(gè)單位,得到的函數(shù)y=g(x)=sin(x-)=sin( x-) 的圖象,
故選D.
點(diǎn)評(píng):本題主要考查函數(shù)y=Asin(ωx+∅)的圖象變換,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=sin(2x+
π
3
)的圖象,只要把函數(shù)y=sinx的圖象上所有的點(diǎn)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列命題:
①函數(shù)y=sin(-2x+
π
3
)
的單調(diào)增區(qū)間是[-kπ-
π
12
,-kπ+
12
](k∈Z)

②要得到函數(shù)y=cos(x-
π
6
)
的圖象,需把函數(shù)y=sinx的圖象上所有點(diǎn)向左平行移動(dòng)
π
3
個(gè)單位長度.
③已知函數(shù)f(x)=2cos2x-2acosx+3,當(dāng)a≤-2時(shí),函數(shù)f(x)的最小值為g(a)=5+2a.
④y=sinwx(w>0)在[0,1]上至少出現(xiàn)了100次最小值,則w≥
399
2
π

其中正確命題的序號(hào)是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=sin(2x+
π
6
),有如下結(jié)論:
①函數(shù)f(x)的最小正周期為π;
②函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(
π
6
,0)成中心對(duì)稱;
③函數(shù)y=f(x+t)為偶函數(shù)的一個(gè)充分不必要條件是t=
π
6
;
④把函數(shù)y=sinx的圖象向左平移
π
6
個(gè)單位后,再把圖象上各點(diǎn)的橫坐標(biāo)都縮短為原來的一半(縱坐標(biāo)不變),便得到y(tǒng)=f(x)的圖象.
其中正確的結(jié)論有
①③④
①③④
.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=cos2x的圖象,只需把函數(shù)y=sinx的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南充三模)把函數(shù)y=sinx的圖象按下列順序變換:
①圖象上點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)
②圖象向右平移
π
6
個(gè)單位,得到的函數(shù)y=g(x)的解析式為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案