【題目】設(shè)每個(gè)工作日甲、乙、丙、丁4人需使用某種設(shè)備的概率分別是0.6, 0.5,0.5,0.4,各人是否使用設(shè)備相互獨(dú)立,

1)求同一工作日至少3人需使用設(shè)備的概率;

(2)實(shí)驗(yàn)室計(jì)劃購(gòu)買k臺(tái)設(shè)備供甲、乙、丙、丁使用,若要求同一工作日需使用設(shè)備的人數(shù)大于k”的概率小于0.1,求k的最小值.

【答案】10.31 23

【解析】

試題(1)至少3人需使用設(shè)備分為恰好有3人使用的設(shè)備和4個(gè)人使用設(shè)備.這兩個(gè)是事件是互斥事件,首先利用獨(dú)立事件的概率公式分別求出恰好有3人使用的設(shè)備和4個(gè)人使用設(shè)備的概率,最后相加即可.

利用獨(dú)立事件的概率公式和互斥事件的概率公式計(jì)算出同一工作日4人需使用設(shè)備的概率.然后結(jié)合(1)的結(jié)論即可得出結(jié)論.

試題解析:記Ai表示事件:同一工作日乙、丙中恰有i人需使用設(shè)備,i=0,1,2.

B表示事件:甲需使用設(shè)備.

C表示事件:丁需使用設(shè)備.

D表示事件:同一工作日至少3人需使用設(shè)備.

E表示事件:同一工作日4人需使用設(shè)備.

F表示事件:同一工作日需使用設(shè)備的人數(shù)大于k.

1D=A1·B·C+A2·B+A2··C

P(B)=0.6,P(C)=0.4,P(Ai)=.

所以P(D)=P(A1·B·C+A2·B+A2··C)= P(A1·B·C)+P(A2·B)+P(A2··C)

= P(A1P)·P(B)·P(C)+P(A2)·P(B)+P(A2)·p()·p(C)=0.31.

(2)由(1)知,若k=3,則P(F)==0.31>0.1.

E=B·C·A2,P(E)=P(B·C·A2)= P(B)·P(C)·P(A2)=0.06;

k=4,則P(F)=0.06<0.1.

所以k的最小值為3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為比較注射兩種藥物產(chǎn)生的皮膚皰疹的面積,選200只家兔作試驗(yàn),將這200只家兔隨機(jī)地分成兩組,每組100只,其中一組注射藥物,另一組注射藥物.表1和表2所示的分別是注射藥物和藥物后皮膚皰疹面積的頻數(shù)分布(皰疹面積單位:

表1

皰疹面積

頻數(shù)

30

40

20

10

表2

皰疹面積

頻數(shù)

10

25

20

30

15

(1)完成圖20-3和圖20-4所示的分別注射藥物后皮膚皰疹面積的頻率分布直方圖,并求注射藥物后皰疹面積的中位數(shù)

(2)完成下表所示的列聯(lián)表,并回答能否有99.9%的把握認(rèn)為注射藥物后的皰疹面積與注射藥物的皰疹面積有差異.(的值精確到0.01)

皰疹面積小于

皰疹面積不小于

合計(jì)

注射藥物A

______

______

注射藥物B

______

______

合計(jì)

附:

P(

0.100

0.050

0.025

0.010

0.001

k

2.706

3.811

5.021

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,點(diǎn)邊上,且.

(1)若,求

(2)若,求的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)沙某公司生產(chǎn)一種高科技晶片100片,生產(chǎn)過(guò)程中由于受到一些不可抗因素的影響,晶片會(huì)受到一定程度的磨損,因此在生產(chǎn)結(jié)束之后需要由測(cè)試人員進(jìn)行相應(yīng)的指標(biāo)測(cè)試.指標(biāo)測(cè)試情況統(tǒng)計(jì)如表所示:

,則稱該晶片為合格品,否則該晶片為劣質(zhì)品.

(1)試求本次生產(chǎn)過(guò)程中該公司生產(chǎn)出合格品的頻率以及數(shù)量;

(2)求這批晶片測(cè)試指標(biāo)的平均值;

(3)現(xiàn)按照分層抽樣的方法在測(cè)試指標(biāo)在之間的晶片中抽取6個(gè)晶片,再?gòu)倪@6個(gè)晶片中任取2個(gè)晶片進(jìn)入深入分析,求恰有1個(gè)晶片的測(cè)試指標(biāo)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某單位甲、乙、丙三個(gè)部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進(jìn)行睡眠時(shí)間的調(diào)查.

(1)應(yīng)從甲、乙、丙三個(gè)部門的員工中分別抽取多少人?

(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的身體檢查.用X表示抽取的3人中睡眠不足的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了豐富學(xué)生的課余生活,以班級(jí)為單位組織學(xué)生開展古詩(shī)詞背誦比賽,隨機(jī)抽取一首,背誦正確加10分,背誦錯(cuò)誤減10分,且背誦結(jié)果只有“正確”和“錯(cuò)誤”兩種.其中某班級(jí)學(xué)生背誦正確的概率,記該班級(jí)完成首背誦后的總得分為.

(1)求的概率;

(2)記,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),若,求證:

(1)方程有實(shí)根.

(2)若﹣2<<﹣1且設(shè)x1,x2是方程f(x)=0的兩個(gè)實(shí)根,則≤|x1﹣x2|<

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)滿足,對(duì)任意恒成立.

1)求的解析式;

2)若,對(duì)于實(shí)數(shù),記函數(shù)在區(qū)間上的最小值為,且恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

1)求的值;

2)判斷函數(shù)的單調(diào)性,并用定義證明;

3)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案