【題目】在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中且.設(shè).
(1)若,,,求方程在區(qū)間內(nèi)的解集;
(2)若點(diǎn)是直線上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?/span>,不等式的解集為集合.若恒成立,求實(shí)數(shù)的最大值;
(3)若函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在處取得最小值”,求、和滿足的充要條件.
【答案】(1)(2)(3)使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在處取得最小值”的充要條件是“當(dāng)時(shí),()或當(dāng)時(shí),()”
【解析】
(1)由題意,,時(shí),由,可得,
可得,,,再結(jié)合,易求得在區(qū)間內(nèi)的解集。(2)先根據(jù)輔助角公式化簡(jiǎn)
,求出值域根據(jù)
的解為0和,故要使恒成立,即可求出的最大值。(3)
先根據(jù)三角函數(shù)圖像特點(diǎn)求得,進(jìn)而求得的表達(dá)式,然后分別討論
和兩種情況分別討論可求得、和滿足的充要條件。
解:(1)由題意,
當(dāng),,時(shí),,
,則有或,.
即或,.又因?yàn)?/span>,故在內(nèi)的解集為.
(2)在該直線上,故.因此,,
所以,的值域.
又的解為0和,故要使恒成立,只需
,而,
即,所以的最大值.
(3)解:因?yàn)?/span>,設(shè)周期.
由于函數(shù)須滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在處取得最小值”.
因此,根據(jù)三角函數(shù)的圖像特征可知,
,.
又因?yàn)椋稳?/span>的函數(shù)的圖像的對(duì)稱中心都是的零點(diǎn),故需滿足,而當(dāng),時(shí),
因?yàn)?/span>,;所以當(dāng)且僅當(dāng),時(shí),的圖像關(guān)于點(diǎn)對(duì)稱;此時(shí),,.
(i)當(dāng)時(shí),,進(jìn)一步要使處取得最小值,則有,;又,則有,;因此,由可得,;
(ii)當(dāng)時(shí),,進(jìn)一步要使處取得最小值,則有,;又,則有,;因此,由可得,;
綜上,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在處取得最小值”的充要條件是“當(dāng)時(shí),()或當(dāng)時(shí),()”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的值域?yàn)?/span>A,.
(1)當(dāng)的為偶函數(shù)時(shí),求的值;
(2) 當(dāng)時(shí), 在A上是單調(diào)遞增函數(shù),求的取值范圍;
(3)當(dāng)時(shí),(其中),若,且函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,在處取 得最小值,試探討應(yīng)該滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形為梯形,,,四邊形為矩形,且平面平面,又,.
(1)求證:;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某經(jīng)銷商從某養(yǎng)殖場(chǎng)購(gòu)進(jìn)某品種河蟹,并隨機(jī)抽取了 100只進(jìn)行統(tǒng)計(jì),按重量分類統(tǒng)計(jì),得到頻率分布直方圖如下:
(1)記事件為“從這批河蟹中任取一只,重量不超過(guò)120克”,估計(jì);
(2)試估計(jì)這批河蟹的平均重量;
(3)該經(jīng)銷商按有關(guān)規(guī)定將該品種河蟹分三個(gè)等級(jí),并制定出銷售單價(jià)如下:
等級(jí) | 特級(jí) | 一級(jí) | 二級(jí) |
重量 | |||
單價(jià)(元/只) | 40 | 20 | 10 |
試估算該經(jīng)銷商以每千克至多花多少元(取整)收購(gòu)這批河蟹,才能獲利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天干地支紀(jì)年法,源于中國(guó),中國(guó)自古便有十天干與十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀(jì)年法是按順序以一個(gè)天干和一個(gè)地支相配,排列起來(lái),天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類推,排列到“癸酉”后,天干回到“甲”重新開(kāi)始,即“甲戌”,“乙亥”,之后地支回到“子”重新開(kāi)始,即“丙子”,…,以此類推,已知2016年為丙申年,那么到改革開(kāi)放100年時(shí),即2078年為________年
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知鈍角中,角A,B,C的對(duì)邊分別為a,b,c,其中A為鈍角,若,且.
(1)求角C;
(2)若點(diǎn)D滿足,且,求的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,橢圓的離心率為,過(guò)橢圓的左焦點(diǎn),且斜率為的直線,與以右焦點(diǎn)為圓心,半徑為的圓相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)線段是橢圓過(guò)右焦點(diǎn)的弦,且,求的面積的最大值以及取最大值時(shí)實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)若數(shù)列{an}是的遞增等差數(shù)列,其中的a3=5,且a1,a2,a5成等比數(shù)列,
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前項(xiàng)的和Tn.
(3)是否存在自然數(shù)m,使得 <Tn<對(duì)一切n∈N*恒成立?若存在,求出m的值;
若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=6cos2sinωx﹣3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B,C為圖象與x軸的交點(diǎn),且△ABC為正三角形
(1)求ω的值及函數(shù)f(x)的表達(dá)式;
(2)若f(x0),且x0∈(),求f(x0+1)的值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com