【題目】已知橢圓的左、右焦點(diǎn)分別為、,橢圓的離心率為,過(guò)橢圓的左焦點(diǎn),且斜率為的直線,與以右焦點(diǎn)為圓心,半徑為的圓相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)線段是橢圓過(guò)右焦點(diǎn)的弦,且,求的面積的最大值以及取最大值時(shí)實(shí)數(shù)的值.
【答案】(1)(2)最大值,.
【解析】
(1)設(shè),,可得:直線的方程為:,即,直線與圓相切,圓心到直線的距離為,解得,結(jié)合已知,即可求得答案.
(2)將直線的方程與橢圓方程聯(lián)立,求得,結(jié)合導(dǎo)數(shù)知識(shí),即可求得答案.
(1)設(shè),,
直線斜率為,且過(guò)橢圓的左焦點(diǎn).
直線的方程為:,即.
直線與圓相切,
圓心到直線的距離為,
解得.
橢圓的離心率為,即,
解得:,
根據(jù):
橢圓的方程為.
(2)由(1)得,,
直線的斜率不為,
設(shè)直線的方程為:,
將直線的方程與橢圓方程聯(lián)立可得:消掉
可得:,
恒成立,
設(shè),,
則,是上述方程的兩個(gè)不等根,
根據(jù)韋達(dá)定理可得:
,.
的面積:
設(shè),則,,
可得:.
令
恒成立,
函數(shù)在上為減函數(shù),故的最大值為:,
的面積的最大值為,
當(dāng)且僅當(dāng),即時(shí)取最大值,
此時(shí)直線的方程為,即直線垂直于軸,
此時(shí),即.
綜上所述,的面積的最大值,時(shí)的面積的最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列說(shuō)法:
①“”是“”的充分不必要條件;
②定義在上的偶函數(shù)的最大值為30;
③命題“,”的否定形式是“,”.其中正確說(shuō)法的個(gè)數(shù)為
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)z滿(mǎn)足|z|,z的實(shí)部大于0,z2的虛部為2.
(1)求復(fù)數(shù)z;
(2)設(shè)復(fù)數(shù)z,z2,z﹣z2之在復(fù)平面上對(duì)應(yīng)的點(diǎn)分別為A,B,C,求()的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知(是虛數(shù)單位)是關(guān)于的方程的根,、,求的值;
(2)已知(是虛數(shù)單位)是關(guān)于的方程的一個(gè)根,、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求圓的極坐標(biāo)方程;
(2)已知射線,若與圓交于點(diǎn)(異于點(diǎn)),與直線交于點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為,過(guò)點(diǎn)與垂直的直線交軸負(fù)半軸于點(diǎn),且.
(1)求橢圓的方程;
(2)過(guò)橢圓的右焦點(diǎn)作斜率為1的直線與橢圓交于兩點(diǎn),試在軸上求一點(diǎn),使得以,為鄰邊的平行四邊形是菱形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面為直角梯形,,,,,,為線段上的中點(diǎn).
(1)證明:平面;
(2)求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】比較甲、乙兩名學(xué)生的數(shù)學(xué)學(xué)科素養(yǎng)的各項(xiàng)能力指標(biāo)值(滿(mǎn)分為5分,分值高者為優(yōu)),繪制了如圖1所示的六維能力雷達(dá)圖,例如圖中甲的數(shù)學(xué)抽象指標(biāo)值為4,乙的數(shù)學(xué)抽象指標(biāo)值為5,則下面敘述正確的是( )
A. 乙的邏輯推理能力優(yōu)于甲的邏輯推理能力
B. 甲的數(shù)學(xué)建模能力指標(biāo)值優(yōu)于乙的直觀想象能力指標(biāo)值
C. 乙的六維能力指標(biāo)值整體水平優(yōu)于甲的六維能力指標(biāo)值整體水平
D. 甲的數(shù)學(xué)運(yùn)算能力指標(biāo)值優(yōu)于甲的直觀想象能力指標(biāo)值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】10月1日,某品牌的兩款最新手機(jī)(記為型號(hào),型號(hào))同時(shí)投放市場(chǎng),手機(jī)廠商為了解這兩款手機(jī)的銷(xiāo)售情況,在10月1日當(dāng)天,隨機(jī)調(diào)查了5個(gè)手機(jī)店中這兩款手機(jī)的銷(xiāo)量(單位:部),得到下表:
手機(jī)店 |
|
|
|
|
|
型號(hào)手機(jī)銷(xiāo)量 | 6 | 6 | 13 | 8 | 11 |
型號(hào)手機(jī)銷(xiāo)量 | 12 | 9 | 13 | 6 | 4 |
(Ⅰ)若在10月1日當(dāng)天,從,這兩個(gè)手機(jī)店售出的新款手機(jī)中各隨機(jī)抽取1部,求抽取的2部手機(jī)中至少有一部為型號(hào)手機(jī)的概率;
(Ⅱ)現(xiàn)從這5個(gè)手機(jī)店中任選3個(gè)舉行促銷(xiāo)活動(dòng),用
(III)經(jīng)測(cè)算,型號(hào)手機(jī)的銷(xiāo)售成本(百元)與銷(xiāo)量(部)滿(mǎn)足關(guān)系.若表中型號(hào)手機(jī)銷(xiāo)量的方差,試給出表中5個(gè)手機(jī)店的型號(hào)手機(jī)銷(xiāo)售成本的方差的值.(用表示,結(jié)論不要求證明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com