【題目】長時間用手機(jī)上網(wǎng)嚴(yán)重影響著學(xué)生的健康,某校為了解AB兩班學(xué)生手機(jī)上網(wǎng)的時長,分別從這兩個班中隨機(jī)抽取6名同學(xué)進(jìn)行調(diào)查,將他們平均每周手機(jī)上網(wǎng)時長作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).如果學(xué)生平均每周手機(jī)上網(wǎng)的時長大于21小時,則稱為“過度用網(wǎng)”

1)請根據(jù)樣本數(shù)據(jù),分別估計A,B兩班的學(xué)生平均每周上網(wǎng)時長的平均值;

2)從A班的樣本數(shù)據(jù)中有放回地抽取2個數(shù)據(jù),求恰有1個數(shù)據(jù)為“過度用網(wǎng)”的概率;

3)從A班、B班的樣本中各隨機(jī)抽取2名學(xué)生的數(shù)據(jù),記“過度用網(wǎng)”的學(xué)生人數(shù)為,寫出的分布列和數(shù)學(xué)期望E.

【答案】119小時;22小時.23)分布列見詳解;.

【解析】

1)根據(jù)平均數(shù)計算公式,分別計算兩組數(shù)據(jù)的平均數(shù)即可;

2)根據(jù)二項分布的概率計算公式即可求得;

3)根據(jù)題意寫出的取值范圍,再根據(jù)古典概型概率計算公式求得對應(yīng)概率,寫出分布列,根據(jù)分布列求得期望.

1A班樣本數(shù)據(jù)的平均值為

由此估計A班學(xué)生每周平均上網(wǎng)時間19小時;

B班樣本數(shù)據(jù)的平均值為,

由此估計B班學(xué)生每周平均上網(wǎng)時間22小時.

2)因為從A班的6個樣本數(shù)據(jù)中隨機(jī)抽取1個的數(shù)據(jù),為過度用網(wǎng)的概率是,

根據(jù)二項分布的概率計算公式:

A班的樣本數(shù)據(jù)中有放回的抽取2個的數(shù)據(jù),恰有1個數(shù)據(jù)為過度用網(wǎng)的概率:

.

3的可能取值為0,1,2,3,4.

,

,

,

.

的分布列是:

0

1

2

3

4

P

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,動點到直線的距離與動點到點的距離之比為.

(1)求動點的軌跡的方程;

(2)過點作任一直線交曲線,兩點,過點的垂線交直線于點,求證:平分線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)為了了解不同年齡的人對一款智能家電的評價,隨機(jī)選取了50名購買該家電的消費(fèi)者,讓他們根據(jù)實際使用體驗進(jìn)行評分.

(Ⅰ)設(shè)消費(fèi)者的年齡為,對該款智能家電的評分為.若根據(jù)統(tǒng)計數(shù)據(jù),用最小二乘法得到關(guān)于的線性回歸方程為,且年齡的方差為,評分的方差為.求的相關(guān)系數(shù),并據(jù)此判斷對該款智能家電的評分與年齡的相關(guān)性強(qiáng)弱.

(Ⅱ)按照一定的標(biāo)準(zhǔn),將50名消費(fèi)者的年齡劃分為“青年”和“中老年”,評分劃分為“好評”和“差評”,整理得到如下數(shù)據(jù),請判斷是否有的把握認(rèn)為對該智能家電的評價與年齡有關(guān).

好評

差評

青年

8

16

中老年

20

6

附:線性回歸直線的斜率;相關(guān)系數(shù),獨(dú)立性檢驗中的,其中.

臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線處切線的斜率為,求此切線方程;

(2)若有兩個極值點,求的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列命題中,

①從分別標(biāo)有1,2,……,99張卡片中不放回地隨機(jī)抽取2次,每次抽取1張,則抽到的2張卡片上的數(shù)奇偶性不同的概率是;

的展開式中的常數(shù)項為2;

③設(shè)隨機(jī)變量,若,則.

其中所有正確命題的序號是(

A.B.①③

C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABED中,AB//DE,ABBE,點C在AB上,且ABCD,AC=BC=CD=2,現(xiàn)將△ACD沿CD折起,使點A到達(dá)點P的位置,且PE.

(1)求證:平面PBC 平面DEBC;

(2)求三棱錐P-EBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校命制了一套調(diào)查問卷(試卷滿分均為100分),并對整個學(xué)校的學(xué)生進(jìn)行了測試.現(xiàn)從這些學(xué)生的成績中隨機(jī)抽取了50名學(xué)生的成績,按照分成5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績均不低于50分).

1)求頻率分布直方圖中x的值,并估計所抽取的50名學(xué)生成績的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

2)用樣本估計總體,若該校共有2000名學(xué)生,試估計該校這次測試成績不低于70分的人數(shù);

3)若利用分層抽樣的方法從樣本中成績不低于70分的學(xué)生中抽取6人,再從這6人中隨機(jī)抽取3人,試求成績在的學(xué)生至少有1人被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的離心率,橢圓C上的點到其左焦點的最大距離為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點A作直線與橢圓相交于點B,則軸上是否存在點P,使得線段,且?若存在,求出點P坐標(biāo);否則請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】棋盤上標(biāo)有第0、1、2...100站,棋子開始位于第0站,棋手拋擲均勻硬幣走跳棋游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第99站或第100站時,游戲結(jié)束.設(shè)棋子位于第n站的概率為,設(shè).則下列結(jié)論正確的有(

;;

②數(shù)列)是公比為的等比數(shù)列;

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案