【題目】設(shè)函數(shù),函數(shù).
(1)求函數(shù)的值域;
(2)若對(duì)于任意的,總存在,使得成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:
(1)根據(jù)和三種情況分別求出的取值范圍,最后可得函數(shù)的值域?yàn)?/span>。(2)由(1)知,函數(shù)的值域。由函數(shù)上單調(diào)遞增,可得函數(shù)的值域,“對(duì)于任意的,總存在,使得成立”等價(jià)于,并由此得到,解得即為所求。
試題解析:
(1)①當(dāng)時(shí), ,則函數(shù)在(0,1)上單調(diào)遞增,在上單調(diào)遞減,所以。
②當(dāng)時(shí), ;
③當(dāng)時(shí), ,則函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以。
綜上可得。
所以函數(shù)的值域?yàn)?/span>。
(2)由(1)知,函數(shù)的值域
又函數(shù)上單調(diào)遞增,
∴,即,
∴函數(shù)的值域,
由題意得“對(duì)于任意的,總存在,使得成立”等價(jià)于,
∴,
解得.
∴實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: , 分別是其左、右焦點(diǎn),以線段為直徑的圓與橢圓有且僅有兩個(gè)交點(diǎn).
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓于兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),點(diǎn)橫坐標(biāo)的取值范圍是,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4月23日是世界讀書日,惠州市某中學(xué)在此期間開展了一系列的讀書教育活動(dòng)。為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書迷”,低于60分鐘的學(xué)生稱為“非讀書迷”.
(Ⅰ)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書迷”與性別有關(guān)?
(Ⅱ)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“讀書迷”的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、數(shù)學(xué)期望和方差.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“累積凈化量”是空氣凈化器質(zhì)量的一個(gè)重要衡量指標(biāo),它是指空氣凈化從開始使用到凈化效率為50%時(shí)對(duì)顆粒物的累積凈化量,以克表示,根據(jù)《空氣凈化器》國家標(biāo)準(zhǔn),對(duì)空氣凈化器的累計(jì)凈化量有如下等級(jí)劃分:
累積凈化量(克) | 12以上 | |||
等級(jí) |
為了了解一批空氣凈化器(共5000臺(tái))的質(zhì)量,隨機(jī)抽取臺(tái)機(jī)器作為樣本進(jìn)行估計(jì),已知這臺(tái)機(jī)器的累積凈化量都分布在區(qū)間中,按照、、、、均勻分組,其中累積凈化量在的所有數(shù)據(jù)有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:
(1)求的值及頻率分布直方圖中的值;
(2)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共5000臺(tái))中等級(jí)為的空氣凈化器有多少臺(tái)?
(3)從累積凈化量在的樣本中隨機(jī)抽取2臺(tái),求恰好有1臺(tái)等級(jí)為的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌汽車的店,對(duì)最近100份分期付款購車情況進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
頻數(shù) | 20 | 20 |
(1)若以上表計(jì)算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數(shù)量較大)中隨機(jī)抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率;
(2)按分層抽樣方式從這100為顧客中抽取5人,再從抽取的5人中隨機(jī)抽取3人,記該店在這3人身上賺取的總利潤為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
(Ⅰ)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(Ⅱ)能否有的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提供更好的調(diào)查方法來估計(jì)該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中, 平面,底面為直角梯形, , , ,且為線段上的一動(dòng)點(diǎn).
(Ⅰ)若為線段的中點(diǎn),求證: 平面;
(Ⅱ)當(dāng)直線與平面所成角小于,求長度的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次水下科研考察活動(dòng)中,需要潛水員潛入水深為60米的水底進(jìn)行作業(yè),根據(jù)已往經(jīng)驗(yàn),潛水員下潛的平均速度為(米/單位時(shí)間),每單位時(shí)間的用氧量為(升),在水底作業(yè)10個(gè)單位時(shí)間,每單位時(shí)間用氧量為(升),返回水面的平均速度為(米/單位時(shí)間),每單位時(shí)間用氧量為(升),記該潛水員在此次考察活動(dòng)中的總用氧量為(升).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)若,求當(dāng)下潛速度取什么值時(shí),總用氧量最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為為參數(shù)).
(1)直線過且與曲線相切,求直線的極坐標(biāo)方程;
(2)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,求曲線上的點(diǎn)到點(diǎn)的距離的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com