【題目】中國農歷的二十四節(jié)氣是凝結著中華民族的智慧與傳統(tǒng)文化的結晶,二十四節(jié)氣歌是以春、夏、秋、冬開始的四句詩,20161130日,二十四節(jié)氣正式被聯(lián)合國教科文組織列入人類非物質文化遺產,也被譽為中國的第五大發(fā)明.某小學三年級共有學生500名,隨機抽查100名學生并提問二十四節(jié)氣歌,只能說出春夏兩句的有45人,能說出春夏秋三句及其以上的有32人,據(jù)此估計該校三年級的500名學生中,對二十四節(jié)氣歌只能說出第一句或一句也說不出的大約有(

A.69B.84C.108D.115

【答案】D

【解析】

先求出只能說出第一句或一句也說不出的學生人數(shù),可得它所占的比例,再用樣本容量500乘以此比例,即為所求.

由題意,只能說出第一句,或一句也說不出的同學有100453223人,

故只能說出第一句或一句也說不出的學生占的比例為,

故只能說出第一句或一句也說不出的學生共有500115人,

故選:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為矩形,,,側面SAD是以AD為斜邊的等腰直角三角形,且平面平面ABCD,MN分別為AD,SC的中點.

1)求證:平面SAB

2)求直線BN與平面SAB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人分別從4種不同的圖書中任選2本閱讀,則甲、乙兩人選的2本恰好相同的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.

(1)求橢圓的方程;

(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線經過點,傾斜角為,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系.

(1)寫出直線的極坐標方程和曲線的直角坐標方程;

(2)設直線與曲線相交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年初,一場新冠肺炎疫情突如其來,在黨中央強有力的領導下,全國各地的醫(yī)務工作者迅速馳援湖北,以大無畏的精神沖在了抗擊疫情的第一線,迅速控制住疫情.但國外疫情嚴峻,輸入性病例逐漸增多,為了鞏固我國的抗疫成果,保護國家和人民群眾的生命安全,我國三家生物高科技公司各自組成A、B、C三個科研團隊進行加急疫苗研究,其研究方向分別是滅活疫苗、核酸疫苗和全病毒疫苗,根據(jù)這三家的科技實力和組成的團隊成員,專家預測這A、B、C三個團隊未來六個月中研究出合格疫苗并用于臨床接種的概率分別為,,,且三個團隊是否研究出合格疫苗相互獨立.

1)求六個月后A,B兩個團隊恰有一個研究出合格疫苗并用于臨床接種的概率;

2)設六個月后研究出合格疫苗并用于臨床接種的團隊個數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為4.且過點

1)求橢圓E的方程;

2)設,,過B點且斜率為的直線l交橢圓E于另一點M,交x軸于點Q,直線AM與直線相交于點P.證明:O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱錐中,,,,點中點.

1)求證:平面平面;

2)若點中點,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)以往統(tǒng)計資料,某地車主購買甲種保險的概率為0.4,購買乙種保險但不購買甲種保險的概率為0.2.設各車主購買保險相互獨立.

1)求該地1位車主至少購買甲乙兩種保險中的1種的概率;

2)求該地3位車主中恰有1位車主甲乙兩種保險都不購買的概率.

查看答案和解析>>

同步練習冊答案