【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 ,(其中φ為參數(shù)),曲線 ,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,射線l:θ=α(ρ≥0)與曲線C1 , C2分別交于點(diǎn)A,B(均異于原點(diǎn)O)
(1)求曲線C1 , C2的極坐標(biāo)方程;
(2)當(dāng) 時(shí),求|OA|2+|OB|2的取值范圍.

【答案】
(1)解:∵ ,∴ ,

得曲線C1的極坐標(biāo)方程為

∵x2+y2﹣2y=0,∴曲線C2的極坐標(biāo)方程為ρ=2sinθ


(2)解:由(1)得 ,|OB|22=4sin2α,

,∴1<1+sin2α<2,∴ ,

∴|OA|2+|OB|2的取值范圍為(2,5)


【解析】(1)求出普通方程,再求曲線C1 , C2的極坐標(biāo)方程;(2)當(dāng) 時(shí),由(1)得 ,|OB|22=4sin2α,即可求|OA|2+|OB|2的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀程序框圖,該算法的功能是輸出(
A.數(shù)列{2n1}的前 4項(xiàng)的和
B.數(shù)列{2n﹣1}的第4項(xiàng)
C.數(shù)列{2n}的前5項(xiàng)的和
D.數(shù)列{2n﹣1}的第5項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)統(tǒng)計(jì),截至2016年底全國(guó)微信注冊(cè)用戶數(shù)量已經(jīng)突破9.27億,為調(diào)查大學(xué)生這個(gè)微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從某市大學(xué)生中隨機(jī)抽取100位同學(xué)進(jìn)行了抽樣調(diào)查,結(jié)果如下:

微信群數(shù)量(個(gè))

頻數(shù)

頻率

0~4

0.15

5~8

40

0.4

9~12

25

13~16

a

c

16以上

5

b

合計(jì)

100

1

(Ⅰ)求a,b,c的值及樣本中微信群個(gè)數(shù)超過(guò)12的概率;
(Ⅱ)若從這100位同學(xué)中隨機(jī)抽取2人,求這2人中恰有1人微信群個(gè)數(shù)超過(guò)12的概率;
(Ⅲ)以(1)中的頻率作為概率,若從全市大學(xué)生中隨機(jī)抽取3人,記X表示抽到的是微信群個(gè)數(shù)超過(guò)12的人數(shù),求X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C所對(duì)的邊,a=2bcosB,b≠c.
(1)證明:A=2B;
(2)若a2+c2=b2+2acsinC,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C所對(duì)的邊,a=2bcosB,b≠c.
(1)證明:A=2B;
(2)若a2+c2=b2+2acsinC,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點(diǎn)E,F分別在A1B1,D1C1上,A1E=D1F=4.過(guò)點(diǎn)E,F的平面與此長(zhǎng)方體的面相交,交線圍成一個(gè)正方形。

(1)(I)在圖中畫出這個(gè)正方形(不必說(shuō)明畫法與理由);
(2)(II)求平面 把該長(zhǎng)方體分成的兩部分體積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形的邊AB=2,BC=1,O是AB的中點(diǎn),點(diǎn)P沿著邊BC,CD與DA運(yùn)動(dòng),記BOP=x,將動(dòng)點(diǎn)P到A,B兩點(diǎn)距離之和表示為x的函數(shù)f(x),則圖像大致為()

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=emx+x2-mx
(1)(I)證明:f(x)在(-,0)單調(diào)遞減,在(0,+)單調(diào)遞增;
(2)(II)若對(duì)于任意x1 , x2[-1,1],都有|f(x1)-f(x2)|e-1,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·四川)已知函數(shù)f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)設(shè)g(x)是f(x)的導(dǎo)函數(shù),評(píng)論g(x)的單調(diào)性;
(2)證明:存在a(0,1),使得f(x)≥0,在區(qū)間(1,+)內(nèi)恒成立,且f(x)=0在(1,+)內(nèi)有唯一解.

查看答案和解析>>

同步練習(xí)冊(cè)答案