【題目】如圖,長(zhǎng)方形的邊AB=2,BC=1,O是AB的中點(diǎn),點(diǎn)P沿著邊BC,CD與DA運(yùn)動(dòng),記BOP=x,將動(dòng)點(diǎn)P到A,B兩點(diǎn)距離之和表示為x的函數(shù)f(x),則圖像大致為()

A.
B.
C.
D.

【答案】B
【解析】由題意可得f()=2,f()=+1f(f(),由此可排除C,D。當(dāng)0x時(shí),點(diǎn)P在邊BC上,PB=tanx,PA==,所以f(x)=tanx+,可知x(0,)時(shí)圖像不是線段,可排除A,故選B.
【考點(diǎn)精析】掌握函數(shù)的概念及其構(gòu)成要素是解答本題的根本,需要知道函數(shù)三要素是定義域,對(duì)應(yīng)法則和值域,而定義域和對(duì)應(yīng)法則是起決定作用的要素,因?yàn)檫@二者確定后,值域也就相應(yīng)得到確定,因此只有定義域和對(duì)應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在區(qū)間[﹣5,5]內(nèi)隨機(jī)地取出一個(gè)數(shù)a,則恰好使1是關(guān)于x的不等式2x2+ax﹣a2<0的一個(gè)解的概率大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sinωx﹣ cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四個(gè)實(shí)數(shù)根,則實(shí)數(shù)ω的取值范圍為(
A.( , ]
B.( , ]
C.( , ]
D.( ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 ,(其中φ為參數(shù)),曲線 ,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,射線l:θ=α(ρ≥0)與曲線C1 , C2分別交于點(diǎn)A,B(均異于原點(diǎn)O)
(1)求曲線C1 , C2的極坐標(biāo)方程;
(2)當(dāng) 時(shí),求|OA|2+|OB|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=lnx+a(1-x),問(wèn):(1)討論f(x) 的單調(diào)性;(2)當(dāng) f(x)有最大值,且最大值大于2a-2 時(shí),求a的取值范圍.
(1)(I)討論f(x) 的單調(diào)性;
(2)(II)當(dāng) f(x)有最大值,且最大值大于2a-2 時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:+=1,(ab0)的離心率為,點(diǎn)(2,)在C上
(1)求C的方程;
(2)直線l不經(jīng)過(guò)原點(diǎn)O,且不平行于坐標(biāo)軸,lC有兩個(gè)交點(diǎn)A,B,線段AB中點(diǎn)為M,證明:直線OM的斜率與直線l的斜率乘積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,D是BC上的點(diǎn),AD平分BAC,ABD面積是ADC面積的2倍
(1)(I)求
(2)(II)若AD=1,DC=,求BD和AC的長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·新課標(biāo)I卷)選修4-1:幾何證明選講
如圖AB是⊙O直徑,AC是⊙O切線,BC交⊙O與點(diǎn)E.

(1)若DAC中點(diǎn),求證:DE是⊙O切線;
(2)若OA=CE,求∠ACB的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·陜西)設(shè)fn(x)=x+x2+x...+xn-1, nN, n≥2。
(1)fn'(2)
(2)證明:fn(x)在(0,)內(nèi)有且僅有一個(gè)零點(diǎn)(記為an), 且0<an-<()n.

查看答案和解析>>

同步練習(xí)冊(cè)答案