【題目】設(shè)函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)是否存在極值,若存在,請求出極值;若不存在,請說明

理由;

(3)當(dāng)時.證明:

【答案】(1)的單調(diào)增區(qū)間為的單調(diào)減區(qū)間為;(2)時, 無極值, 時, 有極大值,無極小值.

【解析】試題解析:

1)求得導(dǎo)數(shù),由不等式得增區(qū)間,由不等式得減區(qū)間;(2求出導(dǎo)函數(shù),確定的解及在解的兩側(cè)的正負(fù),當(dāng)時, 無零點(diǎn),函數(shù)無極值點(diǎn),當(dāng)時, 上有一解,且在此解的兩側(cè), 的符號相反,因此有極值點(diǎn),可得極值;(3不等式即為,因此只要求得的最小值且大于2即可.本題最小值不能直接求得,只有用估計(jì)值,由,從而有,可證其大于2

試題解析:

(1) .令,即,得,

的增區(qū)間為;令,即,得,

的減區(qū)間為;∴的單調(diào)增區(qū)間為, 的單調(diào)減區(qū)間為

(2)

當(dāng)時,恒有上為增函數(shù), 故上無極值;

當(dāng)時,令,得 單調(diào)遞增,

單調(diào)遞減.∴, 無極小值;

綜上所述: 時, 無極值, 時, 有極大值,無極小值.

(Ⅲ)證明:設(shè)則即證,只要證

,

上單調(diào)遞增

∴方程有唯一的實(shí)根,且

∵當(dāng)時, .當(dāng)時,

∴當(dāng)時,

,則

∴原命題得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,離心率,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)設(shè)過點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求點(diǎn)的橫坐標(biāo)的取值范圍;

(3)在第(2)問的條件下,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方形ABCD中,AB=1,AD=,F(xiàn)將長方形沿對角線BD折起,使AC=a,得到一個四面體ABCD,如圖所示.

(1)試問:在折疊的過程中,異面直線AB與CD,AD與BC能否垂直?若能垂直,求出相應(yīng)的a值;若不垂直,請說明理由.

(2)當(dāng)四面體ABCD的體積最大時,求二面角ACDB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】葫蘆島市某工廠黨委為了研究手機(jī)對年輕職工工作和生活的影響情況做了一項(xiàng)調(diào)查:在廠內(nèi)用簡單隨機(jī)抽樣方法抽取了30名25歲至35歲的職工,對其“每十天累計(jì)看手機(jī)時間”(單位:小時)進(jìn)行調(diào)查,得到莖葉圖如下.所抽取的男職工“每十天累計(jì)看手機(jī)時間”的平均值和所抽取的女生 “每十天累計(jì)看手機(jī)時間”的中位數(shù)分別是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)教師對所任教的兩個班級各抽取20名學(xué)生進(jìn)行測試,分?jǐn)?shù)分布如表:

(1)若成績120分以上(含120分)為優(yōu)秀,求從乙班參加測試的90分以上(含90分)的同學(xué)中,隨機(jī)任取2名同學(xué),恰有1人為優(yōu)秀的概率;

(2)根據(jù)以上數(shù)據(jù)完成下面的列聯(lián)表:在犯錯概率小于的前提下,你是否有足夠的把握認(rèn)為學(xué)生的數(shù)學(xué)成績是否優(yōu)秀與班級有關(guān)系?

2.072

2.706

3.841

5.024

6.635

7.879

10.828

0.15

0.10

0.05

0.025

0.010

0.005

0.001

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生身高情況,某校以的比例對全校1000名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,已知男女比例為,測得男生身高情況的頻率分布直方圖(如圖所示):

(1)計(jì)算所抽取的男生人數(shù),并估計(jì)男生身高的中位數(shù)(保留兩位小數(shù));

(2)從樣本中身高在之間的男生中任選2人,求至少有1人身高在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一次猜獎游戲中,1,2,3,4四扇門里擺放了, , 四件獎品(每扇門里僅放一件).甲同學(xué)說:1號門里是,3號門里是;乙同學(xué)說:2號門里是,3號門里是;丙同學(xué)說:4號門里是,2號門里是;丁同學(xué)說:4號門里是,3號門里是.如果他們每人都猜對了一半,那么4號門里是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下列表:


喜愛打籃球

不喜愛打籃球

合計(jì)

男生


5


女生

10



合計(jì)



50

已知在全班50人中隨機(jī)抽取1人,抽到喜愛打籃球的學(xué)生的概率為

1)請將上表補(bǔ)充完整(不用寫計(jì)算過程);

2)能否有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由.

下面的臨界值表供參考:


0.15

0.10

0.05

0.025

0.010

0.005

0.001


2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

1)求的值;

(2)判斷函數(shù)的單調(diào)性,并用定義證明;

(3)當(dāng)時, 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案