【題目】已知直線與拋物線交于兩點,且線段恰好被點平分

1求直線的方程;

2拋物線上是否存在點,使得關于直線對稱?若存在,求出直線的方程;若不存在,說明理由

【答案】12不存在,理由見解析

【解析】

試題分析:1由題意可設直線

直線的方程為;2假設存在這樣的直線

的中點為,代入直線的方程不滿足不存在這樣的直線滿足條件

試題解析:1由題意可得直線的斜率存在,且不為

設直線,

代入拋物線方程可得:

判別式

,

即有

,

代入判別式大于成立

所求直線的方程為

2假設存在這樣的直線,則可設與拋物線聯(lián)立

,其中,則

,所以的中點為,代入直線的方程,

不滿足所以不存在這樣的直線滿足條件

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的方程是:,點

1,直線過點且與曲線只有一個公共點,求直線的方程;

2若曲線表示圓且被直線截得的弦長為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知P={x|x2-8x-20≤0},S={x|1-mx≤1+m}.

(1)是否存在實數(shù)m,使xPxS的充要條件,若存在,求出m的范圍;

(2)是否存在實數(shù)m,使xPxS的必要條件,若存在,求出m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在下列結(jié)論中正確的是(  )

A. 在復平面上,x軸叫做實軸,y軸叫做虛軸 B. 任何兩個復數(shù)都不能比較大小

C. 如果實數(shù)a與純虛數(shù)ai對應,那么實數(shù)集與純虛數(shù)集是一一對應的 D. -1的平方根是i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列說法,正確的個數(shù)是

若兩直線的傾斜角相等,則它們的斜率也一定相等;

一條直線的傾斜角為30°;

傾斜角為0°的直線只有一條;

直線的傾斜角α的集合{α|0°≤α<180°}與直線集合建立了一一對應關系.

A.0 B.1

C.2 D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4張卡片上分別寫有數(shù)字1,2,3,4,從這4張卡片中隨機抽取2,則取出的2張卡片上的數(shù)字之和為奇數(shù)的所有基本事件數(shù)為(  )

A. 2 B. 3

C. 4 D. 6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點,在直線上運動,過點垂直的直線和線段的垂直平分線相交于點。

(1)求動點的軌跡的方程;

(2)過(1)中軌跡上的點作兩條直線分別與軌跡相交于,兩點。試探究:當直線的斜率存在且傾斜角互補時,直線的斜率是否為定值?若是,求出這個定值;若不是,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知分別為橢圓的上、下焦點,是拋物線的焦點,點在第二象限的交點,且.

(1)求橢圓的方程;

(2)與圓相切的直線交橢圓,若橢圓上一點滿足,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一項中學生近視情況的調(diào)查中,某校男生150名中有80名近視,女生140名中有70名近視,在檢驗這些中學生眼睛近視是否與性別有關時用什么方法最有說服力( )

A. 平均數(shù)與方差 B. 回歸分析

C. 獨立性檢驗 D. 概率

查看答案和解析>>

同步練習冊答案