【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,它在點(diǎn)處的切線為直線.
(Ⅰ)求直線的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn)為橢圓上一點(diǎn),求點(diǎn)到直線的距離的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)對(duì)曲線的極坐標(biāo)方程兩邊乘以化為直角坐標(biāo)方程.利用導(dǎo)數(shù)可求得曲線在處的切線方程.(2)設(shè)出橢圓的參數(shù)方程,利用點(diǎn)到直線距離公式和三角恒等變換的知識(shí),可求得到直線距離的取值范圍.
試題解析:
選修4-4:坐標(biāo)系與參數(shù)方程
解:(Ⅰ)∵曲線的極坐標(biāo)方程為,
∴,∴曲線的直角坐標(biāo)方程為,
又的直角坐標(biāo)為(2,2),
∵,∴.
∴曲線在點(diǎn)(2,2)處的切線方程為,
即直線的直角坐標(biāo)方程為.
(Ⅱ)為橢圓上一點(diǎn),設(shè),
則到直線的距離,
當(dāng)時(shí),有最小值0.
當(dāng)時(shí),有最大值.
∴到直線的距離的取值范圍為[0, ].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的函數(shù)的圖像經(jīng)過點(diǎn),且在區(qū)間單調(diào)遞減,又知函數(shù)為偶函數(shù),則關(guān)于的不等式的解為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地政府決定建造一批保障房供給社會(huì),緩解貧困人口的住房問題,計(jì)劃用1 600萬元購得一塊土地,在該土地上建造10幢樓房的住宅小區(qū),每幢樓的樓層數(shù)相同,且每層建筑面積均為1 000平方米,每平方米的建筑費(fèi)用與樓層有關(guān),第x層樓房每平方米的建筑費(fèi)用為(kx+800)元(其中k為常數(shù)).經(jīng)測(cè)算,若每幢樓為5層,則該小區(qū)每平方米的平均綜合費(fèi)用為1 270元.
注:每平方米平均綜合費(fèi)用=.
(1) 求k的值;
(2) 問要使該小區(qū)樓房每平方米的平均綜合費(fèi)用最低,應(yīng)將這10幢樓房建成多少層?此時(shí)每平方米的平均綜合費(fèi)用為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)的一種藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測(cè),服藥后每毫升中的含藥量(微克)與時(shí)間(小時(shí))之間近似滿足如圖所示的曲線.(當(dāng)時(shí), ).
(1)寫出第一次服藥后與之間的函數(shù)關(guān)系式;
(2)據(jù)進(jìn)一步測(cè)定,每毫升血液中含藥量不少于微克時(shí),治療疾病有效,求服藥一次后治療疾病有效時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) 的定義域是R,對(duì)于任意實(shí)數(shù) ,恒有,且當(dāng) 時(shí), 。
(1)求證: ,且當(dāng) 時(shí),有 ;
(2)判斷 在R上的單調(diào)性;
(3)設(shè)集合A=,B=,若A∩B=,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)頂點(diǎn)分別為,焦點(diǎn)在軸上,離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)點(diǎn)為軸上一點(diǎn),過作軸的垂線交橢圓于不同的兩點(diǎn),過作的垂線交于點(diǎn).求與的面積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上的動(dòng)點(diǎn)滿足到點(diǎn)的距離比到直線的距離小1.
(1)求曲線的方程;
(2)動(dòng)點(diǎn)在直線上,過點(diǎn)分別作曲線的切線,切點(diǎn)為.直線是否恒過定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C是△ABC的三個(gè)內(nèi)角,向量m=(-1, ),n=(cosA,sinA),且m·n=1.
(1)求角A;
(2)若=-3,求tanC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com