【題目】已知曲線上的動點滿足到點的距離比到直線的距離小1.
(1)求曲線的方程;
(2)動點在直線上,過點分別作曲線的切線,切點為.直線是否恒過定點,若是,求出定點坐標,若不是,請說明理由.
【答案】(1)x2=4y;(2)直線AB過定點(0,2).
【解析】試題分析:(1)由已知動點滿足到點的距離比到直線的距離小1,可得:動點滿足到點的距離與到直線的距離相等.利用拋物線的定義可知:點的軌跡是拋物線;(2)設,設切線的切點為,由得,利用導數(shù)可得,利用向量計算公式即可得出,解出,即可得出切點, ,進而得到切線方程.
試題解析:(1)因為動點滿足到點的距離比到直線的距離小1,所以動點滿足到點的距離與直線的距離相等.
所以曲線是以為焦點為準線的拋物線,所以曲線的方程是: .
(2)設,切點為,由得,所以,所以,解得: ,所以,
,化簡直線方程得: ,
所以直線恒過定點.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知的邊所在直線的方程為,滿足,點在邊所在直線上且滿足.
(1)求邊所在直線的方程;
(2)求外接圓的方程;
(3)若動圓過點,且與的外接圓外切,求動圓的圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,已知曲線的極坐標方程為,它在點處的切線為直線.
(Ⅰ)求直線的直角坐標方程;
(Ⅱ)已知點為橢圓上一點,求點到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,短軸兩個端點為,且四邊形是邊長為2的正方形.
(1)求橢圓的方程;
(2)設是橢圓上一點,為橢圓長軸上一點,求的最大值與最小值;
(3)設是橢圓外的動點,滿足,點是線段與該橢圓的交點,點在線段上,并且滿足,,求點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某小組共有五位同學,他們的身高(單位:米)以及體重指標(單位:千克、米2).如下表所示:
(1)從該小組身高低于1.80的同學中任選2人,求選到的2人身高都在1.78以下的概率;
(2)從該小組同學中任選2人,求選到的2人的身高都在1.70以上且體重指標都在中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為上的偶函數(shù),當時, .對于結論
(1)當時, ;(2)函數(shù)的零點個數(shù)可以為4,5,7;
(3)若,關于的方程有5個不同的實根,則;
(4)若函數(shù)在區(qū)間上恒為正,則實數(shù)的范圍是.
說法正確的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有甲、乙兩種商品,經營銷售這兩種商品所能獲得的利潤依次是P(萬元)和Q(萬元),它們與投入資金x(萬元)的關系有經驗公式:P=,Q= .今有3萬元資金投入經營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入分別應為多少?能獲得的最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= (t+1)lnx,,其中t∈R.
(1)若t=1,求證:當x>1時,f(x)>0成立;
(2)若t> ,判斷函數(shù)g(x)=x[f(x)+t+1]的零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空氣質量按照空氣質量指數(shù)大小分為七檔(五級),相對應空氣質量的七個類別,指數(shù)越大,說明污染的情況越嚴重,對人體危害越大.
指數(shù) | 級別 | 類別 | 戶外活動建議 |
Ⅰ | 優(yōu) | 可正常活動 | |
Ⅱ | 良 | ||
Ⅲ | 輕微污染 | 易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應減少體積消耗和戶外活動. | |
輕度污染 | |||
Ⅳ | 中度污染 | 心臟病和肺病患者癥狀顯著加劇,運動耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應減少體力活動. | |
中度重污染 | |||
Ⅴ | 重污染 | 健康人運動耐受力降低,由明顯強烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應當留在室內,避免體力消耗,一般人群應盡量減少戶外活動. |
現(xiàn)統(tǒng)計邵陽市市區(qū)2016年1月至11月連續(xù)60天的空氣質量指數(shù),制成如圖所示的頻率分布直方圖.
(1)求這60天中屬輕度污染的天數(shù);
(2)求這60天空氣質量指數(shù)的平均值;
(3)一般地,當空氣質量為輕度污染或輕度污染以上時才會出現(xiàn)霧霾天氣,且此時出現(xiàn)霧霾天氣的概率為,請根據(jù)統(tǒng)計數(shù)據(jù),求在未來2天里,邵陽市恰有1天出現(xiàn)霧霾天氣的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com