【題目】已知為正的常數(shù),函數(shù).
(1)若,求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè),求在區(qū)間上的最小值.(為自然對(duì)數(shù)的底數(shù))
【答案】(1) , ;(2) .
【解析】試題分析:(1)把代入函數(shù)解析式,由絕對(duì)值內(nèi)的代數(shù)式等于0求得的值,由解得的的值把定義域分段,去絕對(duì)值后求導(dǎo),利用導(dǎo)函數(shù)求每一段內(nèi)的函數(shù)的增區(qū)間,則時(shí)的函數(shù)的增區(qū)間可求;
(2)把的解析式代入,利用與1和的大小比較去絕對(duì)值,然后求出去絕對(duì)值后的函數(shù)的導(dǎo)函數(shù),利用函數(shù)的單調(diào)性求出函數(shù)在區(qū)間 上的最小值.最后把求得的函數(shù)的最小值寫成分段函數(shù)的形式即可..
試題解析:(1)時(shí), ,
,可得單調(diào)增區(qū)間是,
(2) ,
當(dāng)時(shí),則, ,得;
當(dāng)時(shí), 單調(diào)遞增, ;
當(dāng)時(shí), 在上減, 上增,
綜上所述:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了迎接第二屆國際互聯(lián)網(wǎng)大會(huì),組委會(huì)對(duì)報(bào)名參加服務(wù)的名志愿者進(jìn)行互聯(lián)網(wǎng)知識(shí)測(cè)試,從這名志愿者中采用隨機(jī)抽樣的方法抽取人,所得成績(jī)?nèi)缦拢?/span> , , , , , , , , , , , , , , .
(1)作出抽取的人的測(cè)試成績(jī)的莖葉圖,以頻率為概率,估計(jì)這志愿者中成績(jī)不低于分的人數(shù);
(2)從抽取的成績(jī)不低于分的志愿者中,隨機(jī)選名參加某項(xiàng)活動(dòng),求選取的人恰有一人成績(jī)不低于分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圖書公司有一款圖書的歷史收益率(收益率=利潤÷每本收入)的頻率分布直方圖如圖所示:
(1)試估計(jì)平均收益率;(用區(qū)間中點(diǎn)值代替每一組的數(shù)值)
(2)根據(jù)經(jīng)驗(yàn),若每本圖書的收入在20元的基礎(chǔ)上每增加元,對(duì)應(yīng)的銷量(萬份)與(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組與的對(duì)應(yīng)數(shù)據(jù):
據(jù)此計(jì)算出的回歸方程為
①求參數(shù)的估計(jì)值;
②若把回歸方程當(dāng)作與的線性關(guān)系, 取何值時(shí),此產(chǎn)品獲得最大收益,并求出該最大收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A-BCD中,AB=a,AC=AD=b,BC=CD=DB=c(a>0,b>0,c>0)該三棱錐的截面EFGH平行于AB、CD,分別交AD、AC、BC、BD于E、F、G、H.
(1)證明:AB⊥CD;
(2)求截面四邊形EFGH面積的最大值,并說明面積取最大值時(shí)截面的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1:x2+y2-2mx-4my+5m2-4=0(m∈R),圓C2:x2+y2=1.
(1)過定點(diǎn)M(1,-2)作圓C2的切線,求切線的方程;
(2)若圓C1與圓C2相交,求m的取值范圍;
(3)已知點(diǎn)P(2,0),圓C1上一點(diǎn)A,圓C2上一點(diǎn)B,求||的最小值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下五個(gè)關(guān)于圓錐曲線的命題中:
①平面內(nèi)與定點(diǎn)A(-3,0)和B(3,0)的距離之差等于4的點(diǎn)的軌跡為;
②點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影是M點(diǎn)A的坐標(biāo)是A(3,6),則的最小值是6;
③平面內(nèi)到兩定點(diǎn)距離之比等于常數(shù)的點(diǎn)的軌跡是圓;
④若過點(diǎn)C(1,1)的直線交橢圓于不同的兩點(diǎn)A,B,且C是AB的中點(diǎn),則直線的方程是.
⑤已知P為拋物線上一個(gè)動(dòng)點(diǎn),Q為圓上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到拋物線的準(zhǔn)線距離之和的最小值是
其中真命題的序號(hào)是______.(寫出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率為,左頂點(diǎn)到直線的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線與橢圓C相交于A、B兩點(diǎn),若以AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O,試探究:點(diǎn)O到直線AB的距離是否為定值?若是,求出這個(gè)定值;否則,請(qǐng)說明理由;
(Ⅲ)在(Ⅱ)的條件下,試求△AOB面積S的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),拋物線:的焦點(diǎn)為,射線與拋物線相交于點(diǎn),與其準(zhǔn)線相交于點(diǎn),則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面半徑為,母線長(zhǎng)為的圓柱的軸截面是四邊形,線段上的兩動(dòng)點(diǎn), 滿足.點(diǎn)在底面圓上,且, 為線段的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)四棱錐的體積是否為定值,若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com