【題目】四棱錐P﹣ABCD中,側面PAD⊥底面ABCD,底面ABCD是邊長為2的正方形,又PA=PD,∠APD=60°,E,G分別是BC,PE的中點
(1)求證:AD⊥PE
(2)求二面角E﹣AD﹣G的余弦值.
【答案】
(1)證明:如圖,取AD中點O,連結OP,OE,
∵PA=PD,∴OP⊥AD,
又E是BC的中點,∴OE∥AB,∴OE⊥AD,
又OP∩OE=O,∴AD⊥平面OPE,
∵PE平面OPE,∴AD⊥PE.
(2)解:取OE的中點F,連結FG、OG,則由(1)知AD⊥OG,
又OE⊥AD,∴∠GOE是二面角E﹣AD﹣G的平面角,
∵PA=PD,∠APD=60°,
∴△APD為等邊三角形,且邊長為2,
∴OP= ×2= ,FG= ,OF= =1,
∴OG= ,∴cos .
∴二面角E﹣AD﹣G的余弦值為 .
【解析】(1)取AD中點O,連結OP,OE,推導出OP⊥AD,OE⊥AD,由此能證明AD⊥PE.(2)取OE的中點F,連結FG、OG,則AD⊥OG,OE⊥AD,從而∠GOE是二面角E﹣AD﹣G的平面角,由此能求出二面角E﹣AD﹣G的余弦值.
【考點精析】認真審題,首先需要了解空間中直線與直線之間的位置關系(相交直線:同一平面內,有且只有一個公共點;平行直線:同一平面內,沒有公共點;異面直線: 不同在任何一個平面內,沒有公共點).
科目:高中數學 來源: 題型:
【題目】已知命題P:在R上定義運算:x y=(1-x)y.不等式x (1-a)x<1對任意實數x恒成立;命題Q:若不等式≥2對任意的x∈ N*恒成立.若P∧ Q為假命題,P∨ Q為真命題,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在上的奇函數滿足,且在區(qū)間上是增函數.,若方程在區(qū)間上有四個不同的根,則
A. -8 B. -4 C. 8 D. -16
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定下列命題:①“若α=,則tan α=1”的逆否命題;②若f(x)=cos x,則f(x)為周期函數;③“若a=b,則|a|=|b|”的逆命題;④“若xy=0,則x,y中至少有一個為零”的否命題.其中真命題的序號是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,OA是南北方向的一條公路,OB是北偏東45°方向的一條公路,某風景區(qū)的一段邊界為曲線C.為方便游客光,擬過曲線C上的某點分別修建與公路OA,OB垂直的兩條道路PM,PN,且PM,PN的造價分別為5萬元/百米,40萬元/百米,建立如圖所示的直角坐標系xoy,則曲線符合函數y=x+ (1≤x≤9)模型,設PM=x,修建兩條道路PM,PN的總造價為f(x)萬元,題中所涉及的長度單位均為百米.
(1)求f(x)解析式;
(2)當x為多少時,總造價f(x)最低?并求出最低造價.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓x2+2y2=1,過原點的兩條直線l1和l2分別于橢圓交于A、B和C、D,記得到的平行四邊形ACBD的面積為S.
(1)設A(x1 , y1),C(x2 , y2),用A、C的坐標表示點C到直線l1的距離,并證明S=2|x1y2﹣x2y1|;
(2)設l1與l2的斜率之積為﹣ ,求面積S的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com