【題目】已知定義在上的奇函數(shù)滿足,且在區(qū)間上是增函數(shù).,若方程在區(qū)間上有四個不同的根,則
A. -8 B. -4 C. 8 D. -16
【答案】A
【解析】
由條件“f(x﹣4)=﹣f(x)”得f(x+8)=f(x),說明此函數(shù)是周期函數(shù),又是奇函數(shù),且在[0,2]上為增函數(shù),由這些畫出示意圖,由圖可解決問題.
f(x-8)=f[(x-4)-4]=-f(x-4)=-·-f(x)=f(x),所以函數(shù)是以8為周期的函數(shù),
函數(shù)是奇函數(shù),且在[0,2]上為增函數(shù),
綜合條件得函數(shù)的示意圖,由圖看出,
四個交點(diǎn)中兩個交點(diǎn)的橫坐標(biāo)之和為2×(﹣6)=-12,
另兩個交點(diǎn)的橫坐標(biāo)之和為2×2=4,
所以x1+x2+x3+x4=﹣8.
故答案為:A
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機(jī)變量,若一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0,則p0的值為 ( )
A. 0.954 4 B. 0.682 6 C. 0.997 4 D. 0.977 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C所對邊的邊長,且C=,a+b=λc(其中λ>1).
(1)若λ=時(shí),證明:△ABC為直角三角形;
(2)若·=λ2,且c=3,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(1)求A;
(2)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的導(dǎo)函數(shù)y=f'(x)的圖像如圖所示.
則下列說法中正確的是____(填序號).
①函數(shù)y=f(x)在區(qū)間上單調(diào)遞增;
②函數(shù)y=f(x)在區(qū)間上單調(diào)遞減;
③函數(shù)y=f(x)在區(qū)間(4,5)上單調(diào)遞增;
④當(dāng)x=2時(shí),函數(shù)y=f(x)有極小值;
⑤當(dāng)x=-時(shí),函數(shù)y=f(x)有極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程是ρcos2θ=sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(﹣1,0),直線l與曲線C交于A、B兩點(diǎn).
(1)寫出直線l的極坐標(biāo)方程與曲線C普通方程;
(2)線段MA,MB長度分別記為|MA|,|MB|,求|MA||MB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,已知a1≠0,2an﹣a1=S1Sn , n∈N* .
(1)求a1a2 , 并求數(shù)列{an}的通項(xiàng)公式,
(2)求數(shù)列{nan}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,底面ABCD是邊長為2的正方形,又PA=PD,∠APD=60°,E,G分別是BC,PE的中點(diǎn)
(1)求證:AD⊥PE
(2)求二面角E﹣AD﹣G的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:(3+t)x﹣(t+1)y﹣4=0(t為參數(shù))和圓C:x2+y2﹣6x﹣8y+16=0:
(1)t∈R時(shí),證明直線l與圓C總相交:
(2)直線l被圓C截得弦長最短,求此弦長并求此時(shí)t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com