【題目】已知函數f(x)=lnx,g(x)=ex , 其中e是白然對數的底數,e=2.71828…
(I)若函數φ(x)=f(x)﹣求函數φ(x)的單調區(qū)間;
(Ⅱ)設直線l為函數f(x)的圖象上一點A(x0 , f(x0)處的切線,證明:在區(qū)間(1,+∞)上存在唯一的x0 , 使得直線l與曲線y=g(x)相切.
【答案】解:(Ⅰ)φ(x)=f(x)﹣=lnx﹣,φ′(x)=+,
∵x>0且x≠1,∴φ'(x)>0,
∴函數φ(x)的單調遞增區(qū)間為(0,1)和(1,+∞);
(Ⅱ)證明:∵f′(x)=,∴f′(x0)=,
∴切線l的方程為y﹣lnx0=(x﹣x0),
即y=x+lnx0﹣1,①
設直線l與曲線y=g(x)相切于點(x1 , ),
∵g'(x)=ex , ∴=,∴x1=﹣lnx0 .
∴直線l也為y﹣=(x+lnx0),
即y=x++,②
由①②得lnx0﹣1=+,
∴l(xiāng)nx0=.
下證:在區(qū)間(1,+∞)上x0存在且唯一.
由(Ⅰ)可知,φ(x)=lnx﹣在區(qū)間(1,+∞)上遞增.
又φ(e)=lne﹣=<0,φ(e2)=lne2﹣=>0,
結合零點存在性定理,說明方程φ(x)=0必在區(qū)間(e,e2)上有唯一的根,
這個根就是所求的唯一x
故結論成立.
【解析】(Ⅰ)求導函數,確定導數恒大于0,從而可得求函數φ (x)的單調區(qū)間;
(Ⅱ)先求直線l為函數的圖象上一點A(x0 , f (x0))處的切線方程,再設直線l與曲線y=g(x)相切于點(x1 , ),進而可得lnx0= , 再證明在區(qū)間(1,+∞)上x0存在且唯一即可。
科目:高中數學 來源: 題型:
【題目】如圖,點F1(﹣c,0),F(xiàn)2(c,0)分別是橢圓C: (a>b>0)的左右焦點,經過F1做x軸的垂線交橢圓C的上半部分于點P,過點F2作直線PF2垂線交直線 于點Q.
(Ⅰ)如果點Q的坐標是(4,4),求此時橢圓C的方程;
(Ⅱ)證明:直線PQ與橢圓C只有一個交點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】第一次大考后,某校對甲、乙兩個文科班的數學考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計成績后,得到如下列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.
(I)請完成列聯(lián)表
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(Ⅱ)根據列聯(lián)表的數據能否在犯錯誤的概率不超過0.01的前提下認為成績與班級有關系?
參考公式和臨界值表
,其中.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知空間三點A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)若,且a分別與,垂直,求向量a的坐標;
(2)若∥,且,求點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且Sn+2=2an(n∈N*).
(I)求數列{an}的通項公式;
(Ⅱ)設bn=log2an , 數列{}的前n項和為Tn , 證明:Tn<1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于任意實數a,b,定義max{a,b}= , 已知在[﹣2,2]上的偶函數f(x)滿足當0≤x≤2時,f(x)=max{2x﹣1,2﹣x}若方程f(x)﹣mx+1=0恰有兩個根,則m的取值范圍是( 。
A.[﹣2,﹣eln2)∪(eln2,2]
B.[﹣eln2,0)∪(0,eln2]
C.[﹣2,0)∪(0,2]
D.[﹣e,﹣2)∪(2,e]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校高三年級800名學生在一次百米測試中,成績全部在12秒到17秒之間,抽取其中50個樣本,將測試結果按如下方式分成五組:第一組[12,13),第二組[13,14),…,第五組[16,17],如圖是根據上述分組得到的頻率分布直方圖.
(1)若成績小于13秒被認為優(yōu)秀,求該樣本在這次百米測試中成績優(yōu)秀的人數;
(2)請估計本年級800名學生中,成績屬于第三組的人數;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分14分)已知過原點的動直線與圓 相交于不同的兩點,.
(1)求圓的圓心坐標;
(2)求線段的中點的軌跡的方程;
(3)是否存在實數,使得直線 與曲線只有一個交點?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2﹣(a2+1)x+alnx.
(Ⅰ)若函數f(x)在[ , e]上單調遞減,求實數a的取值范圍;
(Ⅱ)當a時,求f(x)在[1,2]上的最大值和最小值.(注意:ln2<0.7)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com