【題目】某市場研究人員為了了解產業(yè)園引進的甲公司前期的經營狀況,對該公司2018年連續(xù)六個月的利潤進行了統(tǒng)計,并根據得到的數據繪制了相應的折線圖,如圖所示
(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關系,求關于的線性回歸方程,并預測該公司2019年3月份的利潤;
甲公司新研制了一款產品,需要采購一批新型材料,現(xiàn)有兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個月,但新材料的不穩(wěn)定性會導致材料損壞的年限不同,現(xiàn)對兩種型號的新型材料對應的產品各件進行科學模擬測試,得到兩種新型材料使用壽命的頻數統(tǒng)計如下表:
使用壽命/材料類型 | 1個月 | 2個月 | 3個月 | 4個月 | 總計 |
A | 20 | 35 | 35 | 10 | 100 |
B | 10 | 30 | 40 | 20 | 100 |
經甲公司測算平均每包新型材料每月可以帶來萬元收入,不考慮除采購成本之外的其他成本,材料每包的成本為萬元, 材料每包的成本為萬元.假設每包新型材料的使用壽命都是整月數,且以頻率作為每包新型材料使用壽命的概率,如果你是甲公司的負責人,以每包新型材料產生利潤的期望值為決策依據,你會選擇采購哪款新型材料?
參考數據:,
參考公式:回歸直線方程,其中
【答案】(1),預計甲公司2019年3月份的利潤為百萬元(2)見解析
【解析】
(1)根據數據求得b、a即可得回歸直線方程,代入預測月份對應的自變量x的值,即可得預測值。
(2)分別計算兩種情況下的數學期望,比較大小即可得出結論。
解(1)由折線圖可知統(tǒng)計數據共有組,
即,,,,,,
計算可得,
,
所以 ,
,
所以月度利潤與月份代碼之間的線性回歸方程為.
當時,.
故預計甲公司2019年3月份的利潤為百萬元。
(2)由頻率估計概率,每包型新材料可使用個月,個月,個月和個月的概率分別為.,,和,
所以每包型新材料可產生的利潤期望值
.
由頻率估計概率,每包型新材料可使用個月,個月,個月和個月的概率分別為,,和,
所以每包型新材料可產生的利潤期望值
.
.
所以應該采購型新材料。
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為2的正方體中, , , , 分別是棱, , , 的中點,點, 分別在棱, 上移動,且.
(1)當時,證明:直線平面;
(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4—5: 不等式選講
已知函數f(x)= 的定義域為R.
(Ⅰ)求實數m的取值范圍;
(Ⅱ)若m的最大值為n,當正數a,b滿足 =n時,求7a+4b的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,假命題的是( )
A.一條直線與兩個平行平面中的一個相交,則必與另一個平面相交.
B.平行于同一平面的兩條直線一定平行.
C.如果平面不垂直于平面,那么平面內一定不存在直線垂直于平面.
D.若直線不平行于平面,且不在平面內,則在平面內不存在與平行的直線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,橢圓:的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.
(1)求橢圓的標準方程;
(2)是否存在直線:與橢圓相交于兩點,使得?若存在,求的取值范圍;若不存在,請說明理由!
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,三國時代數學家趙爽在《周髀算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內角為,若向弦圖內隨機拋擲500顆米粒(大小忽略不計,取),則落在小正方形(陰影)內的米粒數大約為( )
A. 134 B. 67 C. 200 D. 250
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定點,定直線,動圓經過點且與直線相切.
(I)求動圓圓心的軌跡方程;
(II)設點為曲線上不同的兩點,且,過兩點分別作曲線的兩條切線,且二者相交于點,求面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】邊長為的等邊三角形內任一點到三邊距離之和為定值,這個定值等于;將這個結論推廣到空間是:棱長為的正四面體內任一點到各面距離之和等于________________.(具體數值)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com