【題目】已知正項(xiàng)數(shù)列滿的前項(xiàng)和為,且滿足.數(shù)列滿足.

1)求數(shù)列、的通項(xiàng)公式;

2)記數(shù)列滿足設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,試比較的大小

【答案】1,;(2)當(dāng)時(shí),;當(dāng)時(shí).

【解析】

(1)利用數(shù)列的前項(xiàng)和與通項(xiàng)的關(guān)系可得,再分情況討論,并結(jié)合等差數(shù)列的證明求解即可.

(2)代入、的通項(xiàng)公式可得,再錯(cuò)位相減可得,裂項(xiàng)相消可得,再利用作差法比較大小即可.

解:(1)數(shù)列各項(xiàng)均為正數(shù),由于,

當(dāng)時(shí),,,解得:

當(dāng)時(shí),作差可得:

﹐所以,

①當(dāng)時(shí),由于所以不合題意,舍去;

②當(dāng)時(shí),為等差數(shù)列,所以,

由于,所以是公比為2的等比數(shù)列,,

解得,所以,即

2)因?yàn)?/span>

所以,,所以

兩式作差可得:

,

所以,

要比較的大小,只需比較與的大小,

經(jīng)檢驗(yàn),當(dāng)時(shí),,

當(dāng)時(shí),

此時(shí),,即,

綜上所述,當(dāng)時(shí),﹔當(dāng)時(shí)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,若,的方向是沿方向繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)角得到的,則稱經(jīng)過一次變換得到.已知向量經(jīng)過一次變換后得到,經(jīng)過一次變換后得到,,如此下去,經(jīng)過一次變換后得到,設(shè),則__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解市民對電視劇市場的愛好,某上星電視臺邀請了100位電視劇愛好者(男50人、女50人)對4月份觀看其播出的電視劇集數(shù)進(jìn)行調(diào)研,得到這100名電視劇愛好者觀看集數(shù)的中位數(shù)為39集(假設(shè)這100名電視劇愛好者的觀看集數(shù)均在集內(nèi)),且觀看集數(shù)在集內(nèi)的人數(shù)為15,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖.

1)求,的值;

2)有些觀眾喜歡帶有主角光環(huán)意識來觀劇.但是最近幾年的影視作品里出現(xiàn)了一個(gè)有趣的趨勢——攻氣十足的女性角色越來越討人喜歡,傻白甜的女主們則破了主角光環(huán),各種被嫌棄,更有些劇集中明明是女配的腳本,卻因?yàn)楦哂写笈鳉鈭,而獲得了比主角更多的關(guān)注與聲量,如《完美關(guān)系》里的斯黛拉,《精英律師》里的栗娜,《我的前半生》里的唐晶,……已知在這100名電視劇愛好者的女性中有31名認(rèn)為自己有主角光環(huán)意識,男性中有19名認(rèn)為自己有主角光環(huán)意識,根據(jù)以上數(shù)據(jù)請同學(xué)們制作出列聯(lián)表,并且判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為性別與是否觀劇帶有主角光環(huán)意識有關(guān)系?

參考公式及數(shù)據(jù):,其中.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020110日,中國工程院院士黃旭華和中國科學(xué)院院士曾慶存榮獲2019年度國家最高科學(xué)技術(shù)獎(jiǎng).曾慶存院士是國際數(shù)值天氣預(yù)報(bào)奠基人之一,他的算法是世界數(shù)值天氣預(yù)報(bào)核心技術(shù)的基礎(chǔ),在氣象預(yù)報(bào)中,過往的統(tǒng)計(jì)數(shù)據(jù)至關(guān)重要,如圖是根據(jù)甲地過去50年的氣象記錄所繪制的每年高溫天數(shù)(若某天氣溫達(dá)到35 ℃及以上,則稱之為高溫天)的頻率分布直方圖.若某年的高溫天達(dá)到15天及以上,則稱該年為高溫年,假設(shè)每年是否為高溫年相互獨(dú)立,以這50年中每年高溫天數(shù)的頻率作為今后每年是否為高溫年的概率.

1)求今后4年中,甲地至少有3年為高溫年的概率.

2)某同學(xué)在位于甲地的大學(xué)里勤工儉學(xué),成為了校內(nèi)奶茶店(消費(fèi)區(qū)在戶外)的店長,為了減少高溫年帶來的損失,該同學(xué)現(xiàn)在有兩種方案選擇:方案一:不購買遮陽傘,一旦某年為高溫年,則預(yù)計(jì)當(dāng)年的收入會減少6000元;方案二:購買一些遮陽傘,費(fèi)用為5000元,可使用4年,一旦某年為高溫年,則預(yù)計(jì)當(dāng)年的收入會增加1000.4年為期,試分析該同學(xué)是否應(yīng)該購買遮陽傘?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,的中點(diǎn),.

1)求證:平面;

2)若異面直線所成角為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角系中,點(diǎn)A為曲線C在第一象限的圖象上的動點(diǎn),點(diǎn)E,G在曲線C的準(zhǔn)線上,且點(diǎn)Gx軸的下方,圓O與準(zhǔn)線相切,直線交曲線C于點(diǎn)B,交圓O于點(diǎn)D,H.

1)當(dāng)點(diǎn)H為曲線C的焦點(diǎn),時(shí),求;

2)當(dāng)點(diǎn)O的內(nèi)心時(shí),若,求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記數(shù)列的前項(xiàng)和為,若存在實(shí)數(shù)H,使得對任意的,都有,則稱數(shù)列為“和有界數(shù)列”.下列說法正確的是(

A.是等差數(shù)列,且公差,則是“和有界數(shù)列”

B.是等差數(shù)列,且是“和有界數(shù)列”,則公差

C.是等比數(shù)列,且公比,則是“和有界數(shù)列”

D.是等比數(shù)列,且是“和有界數(shù)列”,則的公比

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是空氣質(zhì)量的一個(gè)重要指標(biāo),我國PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35μg/m3以下空氣質(zhì)量為一級,在35μg/m375μg/m3之間空氣質(zhì)量為二級,在75μg/m3以上空氣質(zhì)量為超標(biāo).如圖是某市2019121日到10PM2.5日均值(單位:μg/m3)的統(tǒng)計(jì)數(shù)據(jù),則下列敘述不正確的是(

A.10天中,125日的空氣質(zhì)量超標(biāo)

B.10天中有5天空氣質(zhì)量為二級

C.5日到10日,PM2.5日均值逐漸降低

D.10天的PM2.5日均值的中位數(shù)是47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,斜三棱柱中,,,D的中點(diǎn).

1)證明:平面平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案