【題目】已知x∈(0, ),則函數(shù)f(x)=sinxtanx+cosxcotx的值域為( )
A.[1,2)
B.[ ,+∞)
C.(1, ]
D.[1,+∞)
【答案】B
【解析】解:x∈(0, )時,
函數(shù)f(x)=sinxtanx+cosxcotx
= +
=
=
= ;
令sinx+cosx=t,
則t= sin(x+ ),sinxcosx= ;
∵x∈(0, ),
∴sin(x+ )∈( ,1],t∈(1, ];
∴f(x)可化為f(t)= = ,∴f′(t)= <0,
∴t∈(1, ]時,函數(shù)f(t)是單調(diào)減函數(shù);
當(dāng)t= 時,函數(shù)f(t)取得最小值f( )= = ,且無最大值;
∴函數(shù)f(x)的值域是[ ,+∞).
故選:B.
【考點精析】認真審題,首先需要了解三角函數(shù)的最值(函數(shù),當(dāng)時,取得最小值為;當(dāng)時,取得最大值為,則,,).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.
(I)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;
(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)=lnx+ax2+(2a+1)x.
(1)討論的單調(diào)性;
(2)當(dāng)a﹤0時,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中, , , , ,直線與平面成角, 為的中點, , .
(Ⅰ)若,求證:平面平面;
(Ⅱ)若,求直線與平面所成角的正弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,如果輸出S=3,那么判斷框內(nèi)應(yīng)填入的條件是( )
A.k≤6
B.k≤7
C.k≤8
D.k≤9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體中, 為線段的中點,為線段上一動點.
(Ⅰ)求證:;
(Ⅱ)當(dāng)時,求三棱錐的體積;
(Ⅲ)在線段上是否存在一點,使得平面?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】x的取值范圍為[0,10],給出如圖所示程序框圖,輸入一個數(shù)x.
(1)請寫出程序框圖所表示的函數(shù)表達式;
(2)求輸出的y(y<5)的概率;
(3)求輸出的y(6<y≤8)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(1)若函數(shù)在上單調(diào)遞增,求的取值范圍;
(2)設(shè),點是曲線與的一個交點,且這兩曲線在點處的切線互相垂直,證明:存在唯一的實數(shù)滿足題意,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次趣味校園運動會的頒獎儀式上,高一、高二、高三代表隊人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就座,其中高二代表隊有6人.
(1)求n的值;
(2)把在前排就座的高二代表隊6人分別記為a,b,c,d,e,f,現(xiàn)隨機從中抽取2人上臺抽獎.求a和b至少有一人上臺抽獎的概率;
(3)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該代表中獎;若電腦顯示“謝謝”,則不中獎,求該代表中獎的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com