【題目】已知x∈(0, ),則函數(shù)f(x)=sinxtanx+cosxcotx的值域為(
A.[1,2)
B.[ ,+∞)
C.(1, ]
D.[1,+∞)

【答案】B
【解析】解:x∈(0, )時,
函數(shù)f(x)=sinxtanx+cosxcotx
= +
=
=
= ;
令sinx+cosx=t,
則t= sin(x+ ),sinxcosx= ;
∵x∈(0, ),
∴sin(x+ )∈( ,1],t∈(1, ];
∴f(x)可化為f(t)= = ,∴f′(t)= <0,
∴t∈(1, ]時,函數(shù)f(t)是單調(diào)減函數(shù);
當(dāng)t= 時,函數(shù)f(t)取得最小值f( )= = ,且無最大值;
∴函數(shù)f(x)的值域是[ ,+∞).
故選:B.
【考點精析】認真審題,首先需要了解三角函數(shù)的最值(函數(shù),當(dāng)時,取得最小值為;當(dāng)時,取得最大值為,則,,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.

(I)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;

(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當(dāng)a﹤0時,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐 , , , ,直線與平面 的中點, , .

(Ⅰ)若,求證平面平面

(Ⅱ)若,求直線與平面所成角的正弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸出S=3,那么判斷框內(nèi)應(yīng)填入的條件是(

A.k≤6
B.k≤7
C.k≤8
D.k≤9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體中, 為線段的中點為線段上一動點.

(Ⅰ)求證:;

(Ⅱ)當(dāng)時,求三棱錐的體積;

(Ⅲ)在線段上是否存在一點,使得平面說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】x的取值范圍為[0,10],給出如圖所示程序框圖,輸入一個數(shù)x.
(1)請寫出程序框圖所表示的函數(shù)表達式;
(2)求輸出的y(y<5)的概率;
(3)求輸出的y(6<y≤8)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) .

(1)若函數(shù)上單調(diào)遞增,求的取值范圍;

(2)設(shè),點是曲線的一個交點,且這兩曲線在點處的切線互相垂直,證明:存在唯一的實數(shù)滿足題意,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次趣味校園運動會的頒獎儀式上,高一、高二、高三代表隊人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就座,其中高二代表隊有6人.

(1)求n的值;

(2)把在前排就座的高二代表隊6人分別記為a,b,c,d,e,f,現(xiàn)隨機從中抽取2人上臺抽獎.求a和b至少有一人上臺抽獎的概率;

(3)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示中獎,則該代表中獎;若電腦顯示謝謝,則不中獎,求該代表中獎的概率.

查看答案和解析>>

同步練習(xí)冊答案