【題目】甲、乙兩企業(yè)生產(chǎn)同一種型號零件,按規(guī)定該型號零件的質(zhì)量指標(biāo)值落在內(nèi)為優(yōu)質(zhì)品.從兩個企業(yè)生產(chǎn)的零件中各隨機(jī)抽出了件,測量這些零件的質(zhì)量指標(biāo)值,得結(jié)果如下表:
甲企業(yè):
分組 | |||||||
頻數(shù) | 5 |
乙企業(yè):
分組 | |||||||
頻數(shù) | 5 | 5 |
(1)已知甲企業(yè)的件零件質(zhì)量指標(biāo)值的樣本方差,該企業(yè)生產(chǎn)的零件質(zhì)量指標(biāo)值X服從正態(tài)分布,其中μ近似為質(zhì)量指標(biāo)值的樣本平均數(shù)(注:求時,同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),近似為樣本方差,試根據(jù)企業(yè)的抽樣數(shù)據(jù),估計所生產(chǎn)的零件中,質(zhì)量指標(biāo)值不低于的產(chǎn)品的概率.(精確到)
(2)由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認(rèn)為兩個企業(yè)生產(chǎn)的零件的質(zhì)量有差異.
甲廠 | 乙廠 | 總計 | |
優(yōu)質(zhì)品 | |||
非優(yōu)質(zhì)品 | |||
總計 |
附:
參考數(shù)據(jù):,
參考公式:若,則,
,;
【答案】(1);(2)列聯(lián)表見解析,能在犯錯誤的概率不超過的前提下認(rèn)為兩個企業(yè)生產(chǎn)的產(chǎn)品的質(zhì)量有差異.
【解析】
(1)計算甲企業(yè)的平均值,得出甲企業(yè)產(chǎn)品的質(zhì)量指標(biāo)值,計算所求的概率值;
(2)根據(jù)統(tǒng)計數(shù)據(jù)填寫列聯(lián)表,計算,對照臨界值表得出結(jié)論.
(1)依據(jù)上述數(shù)據(jù),甲廠產(chǎn)品質(zhì)量指標(biāo)值的平均值為:
,
所以,,
即甲企業(yè)生產(chǎn)的零件質(zhì)量指標(biāo)值X服從正態(tài)分布,
又,則,
,
,
所以,甲企業(yè)零件質(zhì)量指標(biāo)值不低于的產(chǎn)品的概率為.
(2)列聯(lián)表:
甲廠 | 乙廠 | 總計 | |
優(yōu)質(zhì)品 | |||
非優(yōu)質(zhì)品 | |||
總計 |
計算
∴能在犯錯誤的概率不超過的前提下認(rèn)為兩個企業(yè)生產(chǎn)的產(chǎn)品的質(zhì)量有差異.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示.
(1)求的值;
(2)求在上的最大值和最小值;
(3)不畫圖,說明函數(shù)的圖象可由的圖象經(jīng)過怎樣變化得到.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(1)求的單調(diào)區(qū)間和極值;
(2)證明:若存在零點,則在區(qū)間上僅有一個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,底面ABC為正三角形,底面ABC,,點在線段上,平面平面.
(1)請指出點的位置,并給出證明;
(2)若,求與平面ABE夾角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)討論函數(shù)在上的單調(diào)性;
(2)若,當(dāng)時,,且有唯一零點,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線)的焦點F且斜率為的直線交拋物線C于M,N兩點,且.
(1)求p的值;
(2)拋物線C上一點,直線(其中)與拋物線C交于A,B兩個不同的點(A,B均與點Q不重合).設(shè)直線QA,QB的斜率分別為,.直線l是否過定點?如果是,請求出所有定點;如果不是,請說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地擬在一個U形水面PABQ(∠A=∠B=90°)上修一條堤壩(E在AP上,N在BQ上),圍出一個封閉區(qū)域EABN,用以種植水生植物.為了美觀起見,決定從AB上點M處分別向點E,N拉2條分隔線ME,MN,將所圍區(qū)域分成3個部分(如圖),每部分種植不同的水生植物.已知AB=a,EM=BM,∠MEN=90°,設(shè)所拉分隔線總長度為l.
(1)設(shè)∠AME=2θ,求用θ表示的l函數(shù)表達(dá)式,并寫出定義域;
(2)求l的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記Sn為等比數(shù)列的前n項和,已知S2=2,S3=-6.
(1)求的通項公式;
(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若,,若的單調(diào)區(qū)間;
(2)當(dāng)時,若存在唯一的零點,且,其中,求.
(參考數(shù)據(jù):,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com