【題目】設(shè)橢圓方程),,是橢圓的左右焦點,以,及橢圓短軸的一個端點為頂點的三角形是面積為的正三角形.

1)求橢圓方程;

2)過分別作直線,且,設(shè)與橢圓交于兩點,與橢圓交于,兩點,求四邊形面積的最小值.

【答案】1;(2

【解析】

1)根據(jù)題意,分析可得,計算可得、的值,將、的值代入橢圓的方程即可得答案;

2)根據(jù)題意,分直線的斜率存在、不存在兩種情況討論,借助根與系數(shù)的關(guān)系分析可得四邊形面積,綜合即可得答案.

解:(1)由題設(shè)可得:

,

,,

故橢圓方程為;

2)由(1)可知橢圓的焦點

當其中一條直線斜率不存在時,令,則

當直線斜率存在時,設(shè)直線,

代入橢圓方程得:,

;

所以弦長

,

設(shè)直線的斜率為,不妨設(shè),則,,

因為,,

,

綜上,四邊形面積的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1),求的單調(diào)區(qū)間;

(2)若當恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l的方程為(a1x+y+a+3=0,(aR).

1)若直線l在兩坐標軸上截距的絕對值相等,求直線l的方程;

2)若直線l不經(jīng)過第一象限,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy內(nèi),點()在橢圓Ea0,b0),橢圓E的離心率為,直線l過左焦點F且與橢圓E交于A、B兩點

1)求橢圓E的標準方程;

2)若動直線lx軸不重合,在x軸上是否存在定點P,使得PF始終平分∠APB?若存在,請求出點P的坐標:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)已知橢圓)的半焦距為,原點到經(jīng)過兩點的直線的距離為

)求橢圓的離心率;

)如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長為,焦距為2,拋物線的準線經(jīng)過的左焦點.

(1)求的方程;

(2)直線經(jīng)過的上頂點且交于,兩點,直線分別交于點(異于點),(異于點),證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】讀書可以讓人保持思想活躍,讓人得到智慧啟發(fā),讓人滋養(yǎng)浩然之氣,2018年第一期中國青年閱讀指數(shù)數(shù)據(jù)顯示,從供給的角度,文學(xué)閱讀域是最多的,遠遠超過了其他閱讀域的供給量.某校采用分層抽樣的方法從1000名文科生和2000名理科生中抽取300名學(xué)生進行了在暑假閱讀內(nèi)容和閱讀時間方面的調(diào)查,得到數(shù)據(jù)如表:

文學(xué)閱讀人數(shù)

非文學(xué)閱讀人數(shù)

調(diào)查人數(shù)

理科生

130

文科生

45

合計

1)先完成上面的表格,并判斷能否有90%的把握認為學(xué)生所學(xué)文理與閱讀內(nèi)容有關(guān)?

2300名被調(diào)查的學(xué)生中,隨機進取30名學(xué)生,整理其日平均閱讀時間(單位:分鐘)如表:

閱讀時間

男生人數(shù)

2

4

3

5

2

女生人數(shù)

1

3

4

3

3

試估計這30名學(xué)生日閱讀時間的平均值(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)

3)從(2)中日均閱讀時間不低于120分鐘的學(xué)生中隨機選取2人介紹閱讀心得,求這兩人都是女生的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,PA⊥平面ABC,ABBCPAAB,DPB中點,PC3PE.

1)求證:平面ADE⊥平面PBC;

2)在AC上是否存在一點M,使得MB∥平面ADE?若存在,請確定點M的位置,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級學(xué)生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合計

70

30

100

根據(jù)表中數(shù)據(jù),問是否有的把握認為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;

已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機抽取3人,求至多有1人喜歡甜品的概率.

附:

查看答案和解析>>

同步練習(xí)冊答案