【題目】“讀書可以讓人保持思想活躍,讓人得到智慧啟發(fā),讓人滋養(yǎng)浩然之氣”,2018年第一期中國青年閱讀指數(shù)數(shù)據(jù)顯示,從供給的角度,文學(xué)閱讀域是最多的,遠遠超過了其他閱讀域的供給量.某校采用分層抽樣的方法從1000名文科生和2000名理科生中抽取300名學(xué)生進行了在暑假閱讀內(nèi)容和閱讀時間方面的調(diào)查,得到數(shù)據(jù)如表:
文學(xué)閱讀人數(shù) | 非文學(xué)閱讀人數(shù) | 調(diào)查人數(shù) | |
理科生 | 130 | ||
文科生 | 45 | ||
合計 |
(1)先完成上面的表格,并判斷能否有90%的把握認為學(xué)生所學(xué)文理與閱讀內(nèi)容有關(guān)?
(2從300名被調(diào)查的學(xué)生中,隨機進取30名學(xué)生,整理其日平均閱讀時間(單位:分鐘)如表:
閱讀時間 | |||||
男生人數(shù) | 2 | 4 | 3 | 5 | 2 |
女生人數(shù) | 1 | 3 | 4 | 3 | 3 |
試估計這30名學(xué)生日閱讀時間的平均值(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(3)從(2)中日均閱讀時間不低于120分鐘的學(xué)生中隨機選取2人介紹閱讀心得,求這兩人都是女生的概率.
參考公式: ,其中.
參考數(shù)據(jù):
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)填表見解析,有90%的把握認為學(xué)生所學(xué)文理與閱讀內(nèi)容有關(guān)(2)80(3)
【解析】
(1) 根據(jù)分層抽樣分別計算出選取的文科生與理科生的總?cè)藬?shù),結(jié)合表格已知數(shù)據(jù),即可補充完整列聯(lián)表,將數(shù)據(jù)代入公式計算得出的值,與臨界值比較即可得出結(jié)論.
(2) 利用每組的頻率乘該組的數(shù)據(jù)所在區(qū)間中點的值,最后再求和,即可估計這30名學(xué)生日閱讀時間的平均值.
(3) 根據(jù)(2)可知日均閱讀時間不低于120分鐘的學(xué)生共5人,其中男生2人女生3人,從中隨機選取2人,列舉出所有可能的選擇,找出符合條件的情況,即可求出概率.
(1)根據(jù)題意,選取的300名學(xué)生中文科生100人,理科生200人,列聯(lián)表如下;
文學(xué)閱讀人數(shù) | 非文學(xué)閱讀人數(shù) | 調(diào)查人數(shù) | |
理科生 | 70 | 130 | 200 |
文科生 | 45 | 55 | 100 |
合計 | 115 | 185 | 300 |
所以K2,
∴有90%的把握認為學(xué)生所學(xué)文理與閱讀內(nèi)容有關(guān);
(2)根據(jù)題意平均值為:;
(3)日均閱讀時間不低于120分鐘的學(xué)生共5人,其中男生2人女生3人,設(shè)兩個男生分別為,三個女生為,則從中隨機選取兩個人,有共十種選擇,滿足兩個均為女生的有三種,所以這兩人都是女生的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為3的等邊三角形ABC,E,F分別在邊AB,AC上,且,M為BC邊的中點,AM交EF于點O,沿EF將,折到DEF的位置,使.
(1)證明平面EFCB;
(2)試在BC邊上確定一點N,使平面DOC,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2AD=2,E為邊AB的中點,將△ADE沿直線DE翻折成△DE,使平面DE⊥平面BCDE,若M為線段C的中點,下面四個命題中不正確的是( )
A.BM平面DEB.CE⊥平面DE
C.DEBMD.平面CD⊥平面CE
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓方程(),,是橢圓的左右焦點,以,及橢圓短軸的一個端點為頂點的三角形是面積為的正三角形.
(1)求橢圓方程;
(2)過分別作直線,,且,設(shè)與橢圓交于,兩點,與橢圓交于,兩點,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】鳳鳴山中學(xué)的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是( )
A.與具有正線性相關(guān)關(guān)系
B.回歸直線過樣本的中心點
C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg
D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點到直線的距離為,在橢圓上.
(1)求橢圓的方程;
(2)若過作兩條互相垂直的直線,是與橢圓的兩個交點,是與橢圓的兩個交點,分別是線段的中點試,判斷直線是否過定點?若過定點求出該定點的坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),().
(Ⅰ)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;
(Ⅱ)設(shè),若,若函數(shù)對恒成立,求實數(shù)的取值范圍.(是自然對數(shù)的底數(shù),)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com