【題目】已知動圓過定點,且在y軸上截得的弦MN的長為8

1)求動圓圓心的軌跡C的方程;

2)已知點,長為的線段PQ的兩端點在軌跡C上滑動.當(dāng)軸是的角平分線時,求直線PQ的方程.

【答案】1;(2

【解析】

1)設(shè)圓心,線段MN的中點為E,由圓的性質(zhì)得,

結(jié)合兩點間的距離公式,即可求解

2)當(dāng)PQx軸不垂直時,由x軸平分,得,設(shè)直線,利用根與系數(shù)的關(guān)系,求得,進而解得,得出直線的方程;當(dāng)PQx軸垂直時,取得直線PQ的方程為

1)由題意,動圓過定點

設(shè)圓心,線段MN的中點為E,連接,則,

則由圓的性質(zhì)得,所以

所以,整理得

當(dāng)時,也滿足上式,

所以動圓的圓心的軌跡方程為

2)設(shè),,由題意可知,

(。┊(dāng)PQx軸不垂直時,,

x軸平分,得,

所以,所以,整理得,

設(shè)直線,代入C的方程得:

,所以,解得

由于,解得,

因此直線PQ的方程為

(ⅱ)當(dāng)PQx軸垂直時,,可得直線PQ的方程為

綜上,直線PQ的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國一帶一路戰(zhàn)略構(gòu)思提出后,某科技企業(yè)為抓住一帶一路帶來的機遇,決定開發(fā)生產(chǎn)一款大型電子設(shè)備.生產(chǎn)這種設(shè)備的年固定成本為500萬元,每生產(chǎn)x臺,需另投入成本萬元,當(dāng)年產(chǎn)量不足60臺時,萬元;當(dāng)年產(chǎn)量不小于60臺時,萬元若每臺設(shè)備售價為100萬元,通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.

求年利潤萬元關(guān)于年產(chǎn)量的函數(shù)關(guān)系式;

當(dāng)年產(chǎn)量為多少臺時,該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.

1)求橢圓E的標(biāo)準方程,

2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)求的普通方程和曲線C的直角坐標(biāo)方程;

2)求曲線C上的點到距離的最大值及該點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在上的函數(shù),若函數(shù)滿足:①在區(qū)間上單調(diào)遞減;②存在常數(shù)p,使其值域為,則稱函數(shù)漸近函數(shù)

1)證明:函數(shù)是函數(shù)的漸近函數(shù),并求此時實數(shù)p的值;

2)若函數(shù),證明:當(dāng)時,不是的漸近函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過點的直線,兩點,且滿足以線段為直徑的圓,圓心為,且過坐標(biāo)原點.

1)求拋物線的方程;

2)若圓過點,求直線的方程和圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)生產(chǎn)發(fā)展、生活富裕、鄉(xiāng)風(fēng)文明、村容整潔、管理民主的社會主義新農(nóng)村建設(shè),某自然村將村邊一塊廢棄的扇形荒地(如圖)租給蜂農(nóng)養(yǎng)蜂、產(chǎn)蜜與售蜜.已知扇形AOB中,(百米),荒地內(nèi)規(guī)劃修建兩條直路ABOC,其中點C上(CAB不重合),在小路ABOC的交點D處設(shè)立售蜜點,圖中陰影部分為蜂巢區(qū),空白部分為蜂源植物生長區(qū).設(shè),蜂巢區(qū)的面積為S(平方百米).

1)求S關(guān)于的函數(shù)關(guān)系式;

2)當(dāng)為何值時,蜂巢區(qū)的面積S最小,并求此時S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的上頂點為A,右焦點為F,O是坐標(biāo)原點,是等腰直角三角形,且周長為.

1)求橢圓的方程;

2)若直線lAF垂直,且交橢圓于B,C兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,短軸的兩個端點分別為.

(Ⅰ)若為等邊三角形,求橢圓的方程;

(Ⅱ)若橢圓的短軸長為,過點的直線與橢圓相交于兩點,且,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案