【題目】橢圓E: (a>b>0)的左右焦點分別為F1、F2 , D為橢圓短軸上的一個頂點,DF1的延長線與橢圓相交于G.△DGF2的周長為8,|DF1|=3|GF1|.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過橢圓E的左頂點A作橢圓E的兩條互相垂直的弦AB、AC,試問直線BC是否恒過定點?若是,求出此定點的坐標(biāo);若不是,請說明理由.

【答案】解:(Ⅰ)由△DGF2的周長是8,得:4a=8,解得:a=2,
由|DF1|=3|GF1|且G在DF1的延長線上,
= ,設(shè)G(x0 , y0),
則(x0 , y0﹣b)= (﹣c,﹣b),x0=﹣ c,y0=﹣ b,
=1,解得:c2=2,
∴b2=2,橢圓E的方程是 =1;
(Ⅱ)A(﹣2,0),直線AB、AC均有斜率,
設(shè)AB:y=k(x+2),AC:y=﹣ (x+2),
,得:(2k2+1)x2+8k2x+8k2﹣4=0,
解得:x1=﹣2,x2=﹣ ,
當(dāng)x2=﹣ 時,y2=
∴B(﹣ ),
同理C( ,﹣ ),
直線BC的方程是3kx+2(k2﹣1)y+2k=0,
直線BC恒過定點(﹣ ,0)
【解析】(Ⅰ)根據(jù)三角形的周長求出a的值,設(shè)G(x0 , y0),求出b,c的值,從而求出橢圓E的方程即可;(Ⅱ)分別設(shè)出AB,AC的斜率,聯(lián)立直線和圓的方程組,分別求出B、C的坐標(biāo),求出直線BC的方程,從而求出直線恒過的定點即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓和圓.

(1)若直線過點,且與圓相切,求直線的方程;

(2)若直線過點,且被圓截得的弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎.抽獎方法是:從裝有2個紅球A1 ,A2和1個白球B的甲箱與裝有2個紅球a1 ,a2和2個白球b1,b2的乙箱中,各隨機(jī)摸出1個球.若摸出的2個球都是紅球則中獎,否則不中獎.

(1)用球的標(biāo)號列出所有可能的摸出結(jié)果;

(2)有人認(rèn)為:兩個箱子中的紅球比白球多,所以中獎的概率大于不中獎的概率.你認(rèn)為正確嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了摸清整個江門大道的交通狀況,工作人員隨機(jī)選取20處路段,在給定的測試時間內(nèi)記錄到機(jī)動車的通行數(shù)量情況如下(單位:輛): 147 161 170 180 163 172 178 167 191 182
181 173 174 165 158 154 159 189 168 169
(Ⅰ)完成如下頻數(shù)分布表,并作頻率分布直方圖;

通行數(shù)量區(qū)間

[145,155)

[155,165)

[165,175)

[175,185)

[185,195)

頻數(shù)

(Ⅱ)現(xiàn)用分層抽樣的方法從通行數(shù)量區(qū)間為[165,175)、[175,185)及[185,195)的路段中取出7處加以優(yōu)化,再從這7處中隨機(jī)選2處安裝智能交通信號燈,設(shè)所取出的7處中,通行數(shù)量區(qū)間為[165,175)路段安裝智能交通信號燈的數(shù)量為隨機(jī)變量X(單位:盞),試求隨機(jī)變量X的分布列與數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex﹣ax,a是常數(shù).
(Ⅰ)若a=1,且曲線y=f(x)的切線l經(jīng)過坐標(biāo)原點(0,0),求該切線的方程;
(Ⅱ)討論f(x)的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】極坐標(biāo)系的極點在平面直角坐標(biāo)系的原點O處,極軸與x軸的正半軸重合,兩坐標(biāo)系單位長度相同.已知曲線的極坐標(biāo)方程為ρ=2cosθ+2sinθ,直線l的參數(shù)方程為 (t為參數(shù)).
(Ⅰ)將直線l的參數(shù)方程化為普通方程,將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C上到直線l的距離為d的點的個數(shù)為f(d),求f(d)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點處的切線方程;

(2)設(shè),計算的導(dǎo)數(shù).

【答案】(1).(2).

【解析】試題分析:(1)由導(dǎo)數(shù)的基本定義就出斜率,根據(jù)點斜式寫出切線方程;(2), .

試題解析:

(1),則,

,∴所求切線方程為,.

(2) .

型】解答
結(jié)束】
18

【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機(jī)抽取名學(xué)生作為樣本得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下

1)求出表中及圖中的值;

2)若該校高一學(xué)生有800人,試估計該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列條件求圓的方程.

, , ,三角形的外接圓.

)圓心在直線上,且與直線相切于點

)與軸相切,圓心在直線上,且被直線截得的弦長為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.

(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C= ,求二面角B﹣AC﹣A1的余弦值.

查看答案和解析>>

同步練習(xí)冊答案