【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,點(a,b)在4xcosB﹣ycosC=ccosB上.
(1)cosB的值;
(2)若 =3,b=3 ,求a和c.

【答案】
(1)解:由題意得4acosB﹣bcosC=ccosB,

由正弦定理得4sinAcosB﹣sinBcosC=sinCcosB,

整理得4sinAcosB=sin(B+C)=sinA,

∵sinA≠0,

∴cosB=


(2)解: =| || |cosB= ac=3,

∴ac=12,由b2=a2+c2﹣2accosB,

∴a2+c2=24,

∴a2+c2﹣2ac=(a﹣c)2=0,

∴a=c,

∴a=c=2


【解析】(1)由正弦定理把已知等式中的邊轉(zhuǎn)化為角的正弦,利用兩角和公式化簡即可求得cosB的值.(2)利用向量的數(shù)量積的運算求得ac的值,進而利用余弦定理求得a2+c2的值,進而聯(lián)立方程求得a和c.
【考點精析】通過靈活運用正弦定理的定義和余弦定理的定義,掌握正弦定理:;余弦定理:;;即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)為一次函數(shù),g(x)為二次函數(shù),且f[g(x)]=g[f(x)].

(1)求f(x)的解析式;

(2)若y=g(x)與x軸及y=f(x)都相切,且g(0)= ,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=sinωx(>0)的圖象向右平移 個單位得到函數(shù)y=g(x)的圖象,并且函數(shù)g(x)在區(qū)間[ , ]上單調(diào)遞增,在區(qū)間[ ]上單調(diào)遞減,則實數(shù)ω的值為(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20000元,每生產(chǎn)一件新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù)h(x),其中,x是新樣式單車的月產(chǎn)量(單位:件),利潤=總收益﹣總成本.

(1)試將自行車廠的利潤y元表示為月產(chǎn)量x的函數(shù);

(2)當月產(chǎn)量為多少件時自行車廠的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的不等式|x﹣3|+|x﹣m|≥2m的解集為R. (Ⅰ)求m的最大值;
(Ⅱ)已知a>0,b>0,c>0,且a+b+c=m,求4a2+9b2+c2的最小值及此時a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x),(a>1).

(1)求函數(shù)h(x)=f(x)﹣g(x)的定義域;

(2)求使f(x)﹣g(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率e=,連接橢圓的四個頂點得到的菱形的面積為4.

(1)求橢圓的方程;

(2)設(shè)直線過橢圓的左端點A,與橢圓的另一個交點為B.,AB的垂直平分線交軸于點,且·=4,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex(x﹣aex)有兩個極值點,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若f(﹣1)=﹣3,求a

(2)若f(x)的定義域為R,求a的取值范圍;

(3)是否存在實數(shù)a,使f(x)在(﹣∞,2)上為增函數(shù)?若存在,求出a的范圍?若不存在,說明理由.

查看答案和解析>>

同步練習冊答案