若曲線C:x2+y2+2ax-4ay+5a2-4=0上所有的點(diǎn)均在第二象限內(nèi),a的取值范圍為(  )

(A)(-,-2) (B)(-,-1)

(C)(1,+) (D)(2,+)

 

D

【解析】曲線C的方程可化為(x+a)2+(y-2a)2=4,則該方程表示圓心為(-a,2a),半徑等于2的圓.因?yàn)閳A上的點(diǎn)均在第二象限內(nèi),所以a>2.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十第八章第一節(jié)練習(xí)卷(解析版) 題型:選擇題

已知△ABC三頂點(diǎn)坐標(biāo)A(1,2),B(3,6),C(5,2),MAB中點(diǎn),NAC中點(diǎn),則直線MN的方程為(  )

(A)2x+y-8=0 (B)2x-y+8=0

(C)2x+y-12=0 (D)2x-y-12=0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十八第八章第九節(jié)練習(xí)卷(解析版) 題型:選擇題

已知拋物線y=-x2+3上存在關(guān)于直線x+y=0對(duì)稱的相異兩點(diǎn)A,B,|AB|等于(  )

(A)3 (B)4 (C)3 (D)4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:解答題

如圖,

在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對(duì)角線ACBD互相垂直,ACBD分別在x軸和y軸上.

(1)求證:F<0.

(2)若四邊形ABCD的面積為8,對(duì)角線AC的長(zhǎng)為2,·=0,D2+E2-4F的值.

(3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OHAB且垂足為H.試用平面解析幾何的研究方法判斷點(diǎn)O,G,H是否共線,并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+a+1=0恒過定點(diǎn)C,則以C為圓心,為半徑的圓的方程為(  )

(A)x2+y2-2x+4y=0 (B)x2+y2+2x+4y=0

(C)x2+y2+2x-4y=0 (D)x2+y2-2x-4y=0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十九第八章第十節(jié)練習(xí)卷(解析版) 題型:解答題

給定橢圓C:+=1(a>b>0),稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為F(,0),其短軸上的一個(gè)端點(diǎn)到F的距離為.

(1)求橢圓C的方程和其“準(zhǔn)圓”的方程.

(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)P作直線l1,l2使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),l1,l2分別交其“準(zhǔn)圓”于點(diǎn)M,N.

①當(dāng)P為“準(zhǔn)圓”與y軸正半軸的交點(diǎn)時(shí),l1,l2的方程;

②求證:|MN|為定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十九第八章第十節(jié)練習(xí)卷(解析版) 題型:選擇題

已知拋物線方程為y2=4x,直線l的方程為x-y+4=0,在拋物線上有一動(dòng)點(diǎn)Py軸的距離為d1,P到直線l的距離為d2,d1+d2的最小值為(  )

(A)+2 (B)+1 (C)-2 (D)-1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)五十三第八章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

若直線2x-y+a=0與圓(x-1)2+y2=1有公共點(diǎn),則實(shí)數(shù)a的取值范圍是(  )

(A)-2-<a<-2+

(B)-2-a-2+

(C)-a

(D)-<a<

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十第三章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

如圖,為了研究鐘表與三角函數(shù)的關(guān)系,建立了如圖所示的坐標(biāo)系,設(shè)秒針針尖位置P(x,y).若初始位置為P0(,),當(dāng)秒針從P0(:此時(shí)t=0)正常開始走時(shí),點(diǎn)P的縱坐標(biāo)y與時(shí)間t的函數(shù)關(guān)系為(  )

(A)y=sin(t+) (B)y=sin(-t-)

(C)y=sin(-t+) (D)y=sin(-t-)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案