已知拋物線y=-x2+3上存在關(guān)于直線x+y=0對稱的相異兩點A,B,|AB|等于(  )

(A)3 (B)4 (C)3 (D)4

 

C

【解析】【思路點撥】轉(zhuǎn)化為過A,B兩點且與x+y=0垂直的直線與拋物線相交后求弦長問題求解.

設(shè)直線AB的方程為y=x+b,A(x1,y1),B(x2,y2),

x2+x+b-3=0x1+x2=-1,

AB的中點M(-,-+b),

M(-,-+b)在直線x+y=0,可求出b=1,

x2+x-2=0,

|AB|=·=3.

【方法技巧】對稱問題求解技巧

A,B兩點關(guān)于直線l對稱,則直線AB與直線l垂直,且線段AB的中點在直線l,即直線l是線段AB的垂直平分線,求解這類圓錐曲線上的兩點關(guān)于直線l的對稱問題,常轉(zhuǎn)化為過兩對稱點的直線與圓錐曲線的相交問題求解.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)八十選修4-5第二節(jié)練習(xí)卷(解析版) 題型:解答題

設(shè)0< a,b,c <1,求證:(1-a)b,(1-b)c,(1-c)a,不可能同時大于.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十四第八章第五節(jié)練習(xí)卷(解析版) 題型:選擇題

如圖,已知點B是橢圓+=1(a>b>0)的短軸位于x軸下方的端點,B作斜率為1的直線交橢圓于點M,Py軸上,PMx,·=9,若點P的坐標(biāo)為(0,t),t的取值范圍是(  )

(A)0<t<3 (B)0<t3

(C)0<t< (D)0<t

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十六第八章第七節(jié)練習(xí)卷(解析版) 題型:選擇題

設(shè)拋物線y2=8x上一點Py軸的距離是4,則點P到該拋物線焦點的距離是(  )

(A)4 (B)6 (C)8 (D)12

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十八第八章第九節(jié)練習(xí)卷(解析版) 題型:填空題

已知橢圓+=1(a>b>0)的右頂點為A(1,0),過其焦點且垂直長軸的弦長為1,則橢圓方程為       .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十五第八章第六節(jié)練習(xí)卷(解析版) 題型:解答題

已知雙曲線的中心在原點,焦點F1,F2在坐標(biāo)軸上,離心率為,且過點P(4,-).

(1)求雙曲線的方程.

(2)若點M(3,m)在雙曲線上,求證:·=0.

(3)求△F1MF2的面積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十五第八章第六節(jié)練習(xí)卷(解析版) 題型:選擇題

雙曲線-=1(a>0,b>0)的離心率為2,的最小值為(  )

(A) (B) (C)2 (D)1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

若曲線C:x2+y2+2ax-4ay+5a2-4=0上所有的點均在第二象限內(nèi),a的取值范圍為(  )

(A)(-,-2) (B)(-,-1)

(C)(1,+) (D)(2,+)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十七第八章第八節(jié)練習(xí)卷(解析版) 題型:選擇題

已知動點P(x,y),lgy,lg|x|,lg成等差數(shù)列,則點P的軌跡圖象是(  )

 

 

查看答案和解析>>

同步練習(xí)冊答案