已知拋物線y=-x2+3上存在關(guān)于直線x+y=0對稱的相異兩點A,B,則|AB|等于( )
(A)3 (B)4 (C)3 (D)4
C
【解析】【思路點撥】轉(zhuǎn)化為過A,B兩點且與x+y=0垂直的直線與拋物線相交后求弦長問題求解.
設(shè)直線AB的方程為y=x+b,A(x1,y1),B(x2,y2),
由⇒x2+x+b-3=0⇒x1+x2=-1,
得AB的中點M(-,-+b),
又M(-,-+b)在直線x+y=0上,可求出b=1,
∴x2+x-2=0,
則|AB|=·=3.
【方法技巧】對稱問題求解技巧
若A,B兩點關(guān)于直線l對稱,則直線AB與直線l垂直,且線段AB的中點在直線l上,即直線l是線段AB的垂直平分線,求解這類圓錐曲線上的兩點關(guān)于直線l的對稱問題,常轉(zhuǎn)化為過兩對稱點的直線與圓錐曲線的相交問題求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)八十選修4-5第二節(jié)練習(xí)卷(解析版) 題型:解答題
設(shè)0< a,b,c <1,求證:(1-a)b,(1-b)c,(1-c)a,不可能同時大于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十四第八章第五節(jié)練習(xí)卷(解析版) 題型:選擇題
如圖,已知點B是橢圓+=1(a>b>0)的短軸位于x軸下方的端點,過B作斜率為1的直線交橢圓于點M,點P在y軸上,且PM∥x軸,·=9,若點P的坐標(biāo)為(0,t),則t的取值范圍是( )
(A)0<t<3 (B)0<t≤3
(C)0<t< (D)0<t≤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十六第八章第七節(jié)練習(xí)卷(解析版) 題型:選擇題
設(shè)拋物線y2=8x上一點P到y軸的距離是4,則點P到該拋物線焦點的距離是( )
(A)4 (B)6 (C)8 (D)12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十八第八章第九節(jié)練習(xí)卷(解析版) 題型:填空題
已知橢圓+=1(a>b>0)的右頂點為A(1,0),過其焦點且垂直長軸的弦長為1,則橢圓方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十五第八章第六節(jié)練習(xí)卷(解析版) 題型:解答題
已知雙曲線的中心在原點,焦點F1,F2在坐標(biāo)軸上,離心率為,且過點P(4,-).
(1)求雙曲線的方程.
(2)若點M(3,m)在雙曲線上,求證:·=0.
(3)求△F1MF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十五第八章第六節(jié)練習(xí)卷(解析版) 題型:選擇題
雙曲線-=1(a>0,b>0)的離心率為2,則的最小值為( )
(A) (B) (C)2 (D)1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
若曲線C:x2+y2+2ax-4ay+5a2-4=0上所有的點均在第二象限內(nèi),則a的取值范圍為( )
(A)(-∞,-2) (B)(-∞,-1)
(C)(1,+∞) (D)(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十七第八章第八節(jié)練習(xí)卷(解析版) 題型:選擇題
已知動點P(x,y),若lgy,lg|x|,lg成等差數(shù)列,則點P的軌跡圖象是( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com