【題目】(20)(本小題滿分13分)
已知函數(shù),,其中是自然對(duì)數(shù)的底數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)令,討論的單調(diào)性并判斷有無極值,有極值時(shí)求出極值.
【答案】(Ⅰ).
(Ⅱ)綜上所述:
當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,
函數(shù)有極小值,極小值是;
當(dāng)時(shí),函數(shù)在和和上單調(diào)遞增,在上單調(diào)遞減,函數(shù)有極大值,也有極小值,
極大值是
極小值是;
當(dāng)時(shí),函數(shù)在上單調(diào)遞增,無極值;
當(dāng)時(shí),函數(shù)在和上單調(diào)遞增,
在上單調(diào)遞減,函數(shù)有極大值,也有極小值,
極大值是;
極小值是.
【解析】解:(Ⅰ)由題意
又,
所以,
因此 曲線在點(diǎn)處的切線方程為
,
即 .
(Ⅱ)由題意得 ,
因?yàn)?/span>
,
令
則
所以在上單調(diào)遞增.
所以 當(dāng)時(shí),單調(diào)遞減,
當(dāng)時(shí),
(1)當(dāng)時(shí),
當(dāng)時(shí),,單調(diào)遞減,
當(dāng)時(shí),,單調(diào)遞增,
所以 當(dāng)時(shí)取得極小值,極小值是 ;
(2)當(dāng)時(shí),
由 得 ,
①當(dāng)時(shí),,
當(dāng)時(shí),,單調(diào)遞增;
當(dāng)時(shí),,單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增.
所以 當(dāng)時(shí)取得極大值.
極大值為,
當(dāng)時(shí)取到極小值,極小值是 ;
②當(dāng)時(shí),,
所以 當(dāng)時(shí),,函數(shù)在上單調(diào)遞增,無極值;
③當(dāng)時(shí),
所以 當(dāng)時(shí),,單調(diào)遞增;
當(dāng)時(shí),,單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增;
所以 當(dāng)時(shí)取得極大值,極大值是;
當(dāng)時(shí)取得極小值.
極小值是.
綜上所述:
當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,
函數(shù)有極小值,極小值是;
當(dāng)時(shí),函數(shù)在和和上單調(diào)遞增,在上單調(diào)遞減,函數(shù)有極大值,也有極小值,
極大值是
極小值是;
當(dāng)時(shí),函數(shù)在上單調(diào)遞增,無極值;
當(dāng)時(shí),函數(shù)在和上單調(diào)遞增,
在上單調(diào)遞減,函數(shù)有極大值,也有極小值,
極大值是;
極小值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,BC⊥平面APC,AB=2 ,AP=PC=CB=2.
(1)求證:AP⊥平面PBC;
(2)求二面角P﹣AB﹣C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】河道上有一座圓拱橋,在正常水位時(shí),拱圈最高點(diǎn)距水面9m,拱圈內(nèi)水面寬22m.一條船在水面以上部分高6.5m,船頂部寬4m,故通行無阻.近日水位暴漲了2.7m,為此,必須加重艦載,降低船身,才能通過橋洞.試問船身至少應(yīng)該降低多少?(精確到0.01,參考數(shù)據(jù): )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在四棱錐P﹣ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,點(diǎn)M,N分別為BC,PA的中點(diǎn),且PA=AB=2.
(Ⅰ)證明:BC⊥平面AMN;
(Ⅱ)求三棱錐N﹣AMC的體積;
(Ⅲ)在線段PD上是否存在一點(diǎn)E,使得NM∥平面ACE;若存在,求出PE的長(zhǎng);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, 為圓的直徑,點(diǎn), 在圓上, ,矩形所在的平面和圓所在的平面互相垂直,且, , .
(1)求證: 平面;
(2)設(shè)的中點(diǎn)為,求三棱錐的體積與多面體的體積之比的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是公差為1的等差數(shù)列,a1 , a5 , a25成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=3 +an , 求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人進(jìn)行乒乓球決賽,比賽采取七局四勝制.現(xiàn)在的情形是甲勝3局,乙勝2局.若兩人勝每局的概率相同,則甲獲得冠軍的概率為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com