【題目】為了讓學(xué)生了解環(huán)保知識,增強(qiáng)環(huán)保意識,某中學(xué)舉行了一次“環(huán)保知識競賽”,共有900名學(xué)生參加了這次競賽.為了解本次競賽的成績情況,從中抽取了部分學(xué)生的成績進(jìn)行統(tǒng)計(jì).請你根據(jù)尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示),解答下列問題:
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 10 | |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | ||
合計(jì) | 50 |
(1)填充頻率分布表中的空格;
(2)補(bǔ)全頻率分布直方圖;
(3)若成績在80.5~90.5分的學(xué)生可以獲得二等獎(jiǎng),問獲得二等獎(jiǎng)的學(xué)生約為多少人?
【答案】
(1)解:由題意完成頻率分布表,如下:
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 8 | 0.16 |
70.5~80.5 | 10 | 0.20 |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | 12 | 0.24 |
合計(jì) | 50 | 1.00 |
(2)解:由頻率分布表補(bǔ)全頻率分布直方圖如圖所示:
(3)解:因?yàn)槌煽冊?0.5~90.5分的學(xué)生的頻率為0.32,
且有900名學(xué)生參加了這次競賽,
所以該校獲得二等獎(jiǎng)的學(xué)生約為0.32×900=288(人)
【解析】(1)由題意能完成頻率分布表.(2)由頻率分布表能補(bǔ)全頻率分布直方圖.(3)成績在80.5~90.5分的學(xué)生的頻率為0.32,且有900名學(xué)生參加了這次競賽,由此能求出該校獲得二等獎(jiǎng)的學(xué)生人數(shù).
【考點(diǎn)精析】關(guān)于本題考查的頻率分布表和頻率分布直方圖,需要了解第一步,求極差;第二步,決定組距與組數(shù);第三步,確定分點(diǎn),將數(shù)據(jù)分組;第四步,列頻率分布表;頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了考查培育的某種植物的生長情況,從試驗(yàn)田中隨機(jī)抽取100柱該植物進(jìn)行檢測,得到該植物高度的頻數(shù)分布表如下:
組序 | 高度區(qū)間 | 頻數(shù) | 頻率 |
1 | [230,235) | 14 | 0.14 |
2 | [235,240) | ① | 0.26 |
3 | [240,245) | ② | 0.20 |
4 | [245,250) | 30 | ③ |
5 | [250,255) | 10 | ④ |
合計(jì) | 100 | 1.00 |
(Ⅰ)寫出表中①②③④處的數(shù)據(jù);
(Ⅱ)用分層抽樣法從第3、4、5組中抽取一個(gè)容量為6的樣本,則各組應(yīng)分別抽取多少個(gè)個(gè)體?
(Ⅲ)在(Ⅱ)的前提下,從抽出的容量為6的樣本中隨機(jī)選取兩個(gè)個(gè)體進(jìn)行進(jìn)一步分析,求這兩個(gè)個(gè)體中至少有一個(gè)來自第3組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最小值;
(2)若函數(shù)在上單調(diào),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若把連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo),則點(diǎn)P落在圓x2+y2=25外的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校有學(xué)生2000人,其中高二學(xué)生630人,高三學(xué)生720人.為了解學(xué)生的身體素質(zhì)情況,采用按年級分層抽樣的方法,從該校學(xué)生中抽取一個(gè)200人的樣本.則樣本中高一學(xué)生的人數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C1: =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 點(diǎn)M在雙曲線C1的一條漸近線上,且OM⊥MF2 , 若△OMF2的面積為16,且雙曲線C1與雙曲線C2: =1的離心率相同,則雙曲線C1的實(shí)軸長為( )
A.32
B.16
C.8
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在邊長為24的正方形中,點(diǎn)在邊上,且, ,作分別交、于點(diǎn),作分別交于點(diǎn),將該正方形沿折疊,使得與重合,構(gòu)成如圖2所示的三棱柱.
(1)求證: 平面;
(2)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C為△ABC的內(nèi)角,tanA,tanB是關(guān)于方程x2+ px﹣p+1=0(p∈R)兩個(gè)實(shí)根. (Ⅰ)求C的大小
(Ⅱ)若AB=3,AC= ,求p的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】節(jié)能環(huán)保日益受到人們的重視,水污染治理也已成為“十三五”規(guī)劃的重要議題.某地有三家工廠,分別位于矩形ABCD的兩個(gè)頂點(diǎn)A、B及CD的中點(diǎn)P處,AB=30km,BC=15km,為了處理三家工廠的污水,現(xiàn)要在該矩形區(qū)域上(含邊界),且與A、B等距離的一點(diǎn)O處,建造一個(gè)污水處理廠,并鋪設(shè)三條排污管道AO、BO、PO.設(shè)∠BAO=x(弧度),排污管道的總長度為ykm.
(1)將y表示為x的函數(shù);
(2)試確定O點(diǎn)的位置,使鋪設(shè)的排污管道的總長度最短,并求總長度的最短公里數(shù)(精確到0.01km).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com