【題目】橢圓上一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為, 為其右焦點(diǎn),若,設(shè),且,則該橢圓離心率的最大值為( )
A. B. C. D. 1
【答案】A
【解析】由題知AF⊥BF,根據(jù)橢圓的對(duì)稱性,AF′⊥BF′(其中F′是橢圓的左焦點(diǎn)),因此四邊形AFBF′是矩形,于是,|AB|=|FF′|=2c, , ,根據(jù)橢圓的定義,|AF|+|AF′|=2a,∴,
∴橢圓離心率,
而,
故e的最大值為,故選A.
橢圓的離心率是橢圓最重要的幾何性質(zhì),求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:
①求出a,c,代入公式;
②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=a2-c2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】園林管理處擬在公園某區(qū)域規(guī)劃建設(shè)一半徑為米,圓心角為(弧度)的扇形觀景水池,其中, 為扇形的圓心,同時(shí)緊貼水池周邊(即: 和所對(duì)的圓弧)建設(shè)一圈理想的無寬度步道.要求總預(yù)算費(fèi)用不超過24萬元,水池造價(jià)為每平方米400元,步道造價(jià)為每米1000元.
(1)若總費(fèi)用恰好為24萬元,則當(dāng)和分別為多少時(shí),可使得水池面積最大,并求出最大面積;
(2)若要求步道長為105米,則可設(shè)計(jì)出的水池最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(2-a)lnx++2ax.
(1)當(dāng)a<0時(shí),討論f(x)的單調(diào)性;
(2)若對(duì)任意的a∈(-3,-2),x1,x2∈[1,3],恒有(m+ln 3)a-2ln 3>|f(x1)-f(x2)|成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生的身體狀況,某校隨機(jī)抽取了一批學(xué)生測量體重,經(jīng)統(tǒng)計(jì),這批學(xué)生的體重?cái)?shù)據(jù)(單位:千克)全部介于至之間,將數(shù)據(jù)分成以下組,第一組,第二組,第三組,第四組,第五組,得到如圖所示的頻率分布直方圖,現(xiàn)采用分層抽樣的方法,從第、、組中隨機(jī)抽取名學(xué)生做初檢.
(Ⅰ)求每組抽取的學(xué)生人數(shù).
(Ⅱ)若從名學(xué)生中再次隨機(jī)抽取名學(xué)生進(jìn)行復(fù)檢,求這名學(xué)生不在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,已知點(diǎn)是離心率為的橢圓: 上的一點(diǎn),斜率為的直線交橢圓于、兩點(diǎn),且、、三點(diǎn)互不重合.
(1)求橢圓的方程;
(2)求證:直線, 的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見如表:
(參考公式和計(jì)算結(jié)果:
, , , )
(1)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求的值,并估計(jì)的預(yù)報(bào)值.
(2)現(xiàn)準(zhǔn)備勘探新井,若通過1,3,5,7號(hào)并計(jì)算出的, 的值(, 精確到0.01)相比于(1)中的, ,值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請(qǐng)判斷可否使用舊井?
(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將2張邊長均為1分米的正方形紙片分別按甲、乙兩種方式剪裁并廢棄陰影部分.
(1)在圖甲的方式下,剩余部分恰能完全覆蓋某圓錐的表面,求該圓錐的母線長及底面
半徑;
(2)在圖乙的方式下,剩余部分能完全覆蓋一個(gè)長方體的表面,求長方體體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某互聯(lián)網(wǎng)理財(cái)平臺(tái)為增加平臺(tái)活躍度決定舉行邀請(qǐng)好友拿獎(jiǎng)勵(lì)活動(dòng),規(guī)則是每邀請(qǐng)一位好友在該平臺(tái)注冊(cè),并購買至少1萬元的12月定期,邀請(qǐng)人可獲得現(xiàn)金及紅包獎(jiǎng)勵(lì),現(xiàn)金獎(jiǎng)勵(lì)為被邀請(qǐng)人理財(cái)金額的,且每邀請(qǐng)一位最高現(xiàn)金獎(jiǎng)勵(lì)為300元,紅包獎(jiǎng)勵(lì)為每邀請(qǐng)一位獎(jiǎng)勵(lì)50元.假設(shè)甲邀請(qǐng)到乙、丙兩人,且乙、丙兩人同意在該平臺(tái)注冊(cè),并進(jìn)行理財(cái),乙、丙兩人分別購買1萬元、2萬元、3萬元的12月定期的概率如下表:
理財(cái)金額 | 萬元 | 萬元 | 萬元 |
乙理財(cái)相應(yīng)金額的概率 | |||
丙理財(cái)相應(yīng)金額的概率 |
(1)求乙、丙理財(cái)金額之和不少于5萬元的概率;
(2)若甲獲得獎(jiǎng)勵(lì)為元,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校從參加安全知識(shí)競賽的同學(xué)中,選取60名同學(xué)將其成績(百分制,均為整數(shù),成績分記為優(yōu)秀)分成6組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:
(1)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)從頻率分布直方圖中,估計(jì)本次考試的平均分;
(3)為參加市里舉辦的安全知識(shí)競賽,學(xué)校舉辦預(yù)選賽.已知在學(xué)校安全知識(shí)競賽中優(yōu)秀的同學(xué)通過預(yù)選賽的概率為,現(xiàn)在從學(xué)校安全知識(shí)競賽中優(yōu)秀的同學(xué)中選3人參加預(yù)選賽,若隨機(jī)變量表示這3人中通過預(yù)選賽的人數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com