【題目】如下圖,已知點(diǎn)是離心率為的橢圓: 上的一點(diǎn),斜率為的直線(xiàn)交橢圓于、兩點(diǎn),且、、三點(diǎn)互不重合.
(1)求橢圓的方程;
(2)求證:直線(xiàn), 的斜率之和為定值.
【答案】(1);(2)證明見(jiàn)解析.
【解析】試題分析:(1)根據(jù)離心率為可得,把代入方程可得,又,解方程組即可求得方程;(2)設(shè)直線(xiàn)的方程為,整理方程組,求得, 及參數(shù)的范圍,由斜率公式表示出,結(jié)合直線(xiàn)方程和韋達(dá)定理整理即可得到定值.
試題解析:(1)由題意,可得,代入得,又,解得,
,
所以橢圓的方程為.
(2)證明:設(shè)直線(xiàn)的方程為,又, , 三點(diǎn)不重合,∴,
設(shè), ,
由得,
所以,解得,
,①
,②
設(shè)直線(xiàn), 的斜率分別為, ,
則 (),
分別將①②式代入(),
得,
所以,即直線(xiàn), 的斜率之和為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(Ⅰ)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(Ⅱ)求證: ;
(Ⅲ)判斷曲線(xiàn)是否位于軸下方,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義域?yàn)镽的函數(shù)f(x),若f(x)在(-∞,0)和(0,+∞)上均有零點(diǎn),則稱(chēng)函數(shù)f(x)為“含界點(diǎn)函數(shù)”,則下列四個(gè)函數(shù)中,不是“含界點(diǎn)函數(shù)”的是( )
A. f(x)=x2+bx-1(b∈R) B. f(x)=2-|x-1|
C. f(x)=2x-x2 D. f(x)=x-sin x
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) .
(1)若函數(shù)在上單調(diào)遞增,求的取值范圍;
(2)設(shè)函數(shù),若對(duì)任意的,都有 ,求的取值范圍;
(3)設(shè),點(diǎn)是函數(shù)與的一個(gè)交點(diǎn),且函數(shù)與在點(diǎn)處的切線(xiàn)互相垂直,求證:存在唯一的滿(mǎn)足題意,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)統(tǒng)計(jì),目前微信用戶(hù)已達(dá)10億,2016年,諸多傳統(tǒng)企業(yè)大佬紛紛嘗試進(jìn)入微商渠道,讓這個(gè)行業(yè)不斷地走向正規(guī)化、規(guī)范化.2017年3月25日,第五屆中國(guó)微商博覽會(huì)在山東濟(jì)南舜耕國(guó)際會(huì)展中心召開(kāi),力爭(zhēng)為中國(guó)微商產(chǎn)業(yè)轉(zhuǎn)型升級(jí),某品牌飲料公司對(duì)微商銷(xiāo)售情況進(jìn)行中期調(diào)研,從某地區(qū)隨機(jī)抽取6家微商一周的銷(xiāo)售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).
(1)若銷(xiāo)售金額(單位:萬(wàn)元)不低于平均值的微商定義為優(yōu)秀微商,其余為非優(yōu)秀微商,根據(jù)莖葉圖推斷該地區(qū)110家微商中有幾家優(yōu)秀?
(2)從隨機(jī)抽取的6家微商中再任取2家舉行消費(fèi)者回訪(fǎng)調(diào)查活動(dòng),求恰有1家是優(yōu)秀微商的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓上一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為, 為其右焦點(diǎn),若,設(shè),且,則該橢圓離心率的最大值為( )
A. B. C. D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>,如果存在正實(shí)數(shù),使得對(duì)任意,都有,且恒成立,則稱(chēng)函數(shù)為上的“的型增函數(shù)”,已知是定義在上的奇函數(shù),且在時(shí), ,若為上的“2017的型增函數(shù)”,則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門(mén)的運(yùn)動(dòng)方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
步數(shù) 性別 | 0-2000 | 2001-5000 | 5001-8000 | 8001-10000 | >10000 |
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
附:
(1)已知某人一天的走路步數(shù)超過(guò)8000步被系統(tǒng)評(píng)定為“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類(lèi)型”與“性別”有關(guān)?
積極型 | 懈怠型 | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
(2)若小王以這40位好友該日走路步數(shù)的頻率分布來(lái)估計(jì)其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過(guò)5000步的有人,超過(guò)10000步的有人,設(shè),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形所在平面垂直于直角梯形所在平面于直線(xiàn),且, 且∥.
(Ⅰ)設(shè)點(diǎn)為棱中點(diǎn),求證: 平面;
(Ⅱ)線(xiàn)段上是否存在一點(diǎn),使得直線(xiàn)與平面所成角的正弦值等于?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com