【題目】已知函數(shù) .

(Ⅰ)求曲線在點處的切線方程

(Ⅱ)求證: ;

(Ⅲ)判斷曲線是否位于軸下方,并說明理由.

【答案】(Ⅰ);(Ⅱ)見解析;見解析.

【解析】試題分析:(1)求導(dǎo),得到切線斜率,利用點斜式得到直線的方程;(2)要證明等價于,構(gòu)造新函數(shù)確定函數(shù)的最小值大于等于;(3)曲線是位于軸下方即證明),利用(Ⅱ)可知,轉(zhuǎn)證即可.

試題解析:

函數(shù)的定義域為,

.

,又,

曲線處的切線方程為

.

)“要證明等價于

設(shè)函數(shù).

,解得.

因此,函數(shù)的最小值為..

.

Ⅲ)曲線位于軸下方. 理由如下:

由(Ⅱ)可知,所以.

設(shè),則.

;令.

所以上為增函數(shù), 上為減函數(shù).

所以當(dāng)時, 恒成立,當(dāng)且僅當(dāng)時, .

又因為, 所以恒成立.

故曲線位于軸下方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域為D,若x∈D,y∈D,使得f(y)=﹣f(x)成立,則稱函數(shù)f(x)為“美麗函數(shù)”.下列所給出的五個函數(shù): ①y=x2;②y= ;③f(x)=ln(2x+3);④y=2x+3;⑤y=2sin x﹣1.
其中是“美麗函數(shù)”的序號有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣x+c(c∈R)的一個零點為1. (Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)設(shè) ,若g(t)=2,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如表數(shù)據(jù):

單價x(元)

4

5

6

7

8

9

銷量y(件)

90

84

83

80

75

68

由表中數(shù)據(jù),求得線性回歸方程為 =﹣4x+a.若在這些樣本點中任取一點,則它在回歸直線左下方的概率為 (
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌連鎖便利店有個分店,A,B,C三種商品在各分店均有銷售,這三種商品的單價和重量如表1所示:

商品A

商品B

商品C

單價(元)

15

20

30

每件重量(千克)

0.2

0.3

0.4

1

某日總店向各分店分配的商品A,B,C的數(shù)量如表2所示:

商品 分店

分店1

分店2

……

分店

A

12

20

m1

B

15

20

m2

C

20

15

m3

2

3表示該日分配到各分店去的商品A,B,C的總價和總重量:

分店1

分店2

……

分店

總價(元)

總重量(千克)

3

__________ ; __________ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cosxsin(x+ )﹣ sin2x+sinxcosx
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移m個單位,使所得函數(shù)為偶函數(shù),求m的最小正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)證明當(dāng)時,關(guān)于的不等式恒成立;

(Ⅲ)若正實數(shù)滿足,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某購物中心為了了解顧客使用新推出的某購物卡的顧客的年齡分布情況,隨機調(diào)查了位到購物中心購物的顧客年齡,并整理后畫出頻率分布直方圖如圖所示,年齡落在區(qū)間內(nèi)的頻率之比為.

(1) 求顧客年齡值落在區(qū)間內(nèi)的頻率;

(2) 擬利用分層抽樣從年齡在的顧客中選取人召開一個座談會,現(xiàn)從這人中選出人,求這兩人在不同年齡組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù)中,表示同一函數(shù)的是(
A.f(x)=x0與g(x)=1
B.f(x)=x與g(x)=
C.f(x)=x2﹣1與g(x)=x2+1
D.f(x)=|x|與g(x)=

查看答案和解析>>

同步練習(xí)冊答案