已知:,當(dāng)時(shí),;
時(shí),
(1)求的解析式
(2)c為何值時(shí),的解集為R.


 

解析試題分析:⑴由時(shí),時(shí),
知:是是方程的兩根


⑵由,知二次函數(shù)的圖象開口向下
要使的解集為R,只需
∴當(dāng)時(shí)的解集為R.
考點(diǎn):本題考查了函數(shù)的解析式及恒成立問題
點(diǎn)評(píng):涉及到二次函數(shù)的恒成立問題往往需要用到:(1)若二次函數(shù)y=a+bx+c(a≠0)大于0恒成立,則有,(2)若是二次函數(shù)在指定區(qū)間上的恒成立問題,可以利用韋達(dá)定理以及根的分布知識(shí)求解。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)處有極大值7.
(Ⅰ)求的解析式;(Ⅱ)求=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),.
(Ⅰ) 求函數(shù)在點(diǎn)處的切線方程;
(Ⅱ) 若函數(shù)在區(qū)間上均為增函數(shù),求的取值范圍;
(Ⅲ) 若方程有唯一解,試求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(x)的定義域?yàn)?0,+∞),且滿足f(2)=1,f(xy)=f(x)+f(y),又當(dāng)x2>x1>0時(shí),f(x2)>f(x1).
(1)求f(1)、f(4)、f(8)的值;
(2)若有f(x)+f(x-2)≤3成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù))是定義在上的奇函數(shù),且時(shí),函數(shù)取極值1.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)令,若),不等式恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,
(1)討論的單調(diào)區(qū)間;
(2)若對(duì)任意的,且,有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù))的圖象如圖.根據(jù)圖象寫出:

(1)函數(shù)的最大值;
(2)使值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù))是偶函數(shù)
(1)求的值;
(2)設(shè),若函數(shù)的圖像有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)
(Ⅰ)判斷并證明函數(shù)的奇偶性;
(Ⅱ)若,證明函數(shù)上單調(diào)遞增;
(Ⅲ)在滿足(Ⅱ)的條件下,解不等式.

查看答案和解析>>

同步練習(xí)冊(cè)答案