已知橢圓:的焦距為,離心率為,其右焦點為,過點作直線交橢圓于另一點.
(Ⅰ)若,求外接圓的方程;
(Ⅱ)若直線與橢圓相交于兩點、,且,求的取值范圍.
(1)外接圓方程是,或
(2)或
解析試題分析:解: (Ⅰ)由題意知:,,又,
解得:橢圓的方程為: 2分
由此可得:,
設(shè),則,,
,,即
由,或
即,或 4分
①當(dāng)的坐標(biāo)為時,,外接圓是以為圓心,為半徑的圓,即 5分
②當(dāng)的坐標(biāo)為時,和的斜率分別為和,所以為直角三角形,其外接圓是以線段為直徑的圓,圓心坐標(biāo)為,半徑為,
外接圓的方程為
綜上可知:外接圓方程是,或 7分
(Ⅱ)由題意可知直線的斜率存在.設(shè),,
由得:
由得: 9分
…
,即 10分
,結(jié)合()得: 12分
所以或 14分
考點:直線與橢圓的位置關(guān)系
點評:主要是考查了直線與橢圓的位置關(guān)系的運用,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若過點C(-1,0)且斜率為的直線與橢圓相交于不同的兩點,試問在軸上是否存在點,使是與無關(guān)的常數(shù)?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正方形中,為坐標(biāo)原點,點的坐標(biāo)為,點的坐標(biāo)為,分別將線段和十等分,分點分別記為和,連接,過作軸的垂線與交于點。
(Ⅰ)求證:點都在同一條拋物線上,并求拋物線的方程;
(Ⅱ)過點作直線與拋物線E交于不同的兩點, 若與的面積之比為4:1,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在等腰直角中,,,點在線段上.
(Ⅰ) 若,求的長;
(Ⅱ)若點在線段上,且,問:當(dāng)取何值時,的面積最。坎⑶蟪雒娣e的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點及,點在以、為焦點的橢圓上,且、、 構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)如圖,動直線與橢圓有且僅有一個公共點,點是直線上的兩點,且,. 求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分別求適合下列條件圓錐曲線的標(biāo)準(zhǔn)方程:
(1)焦點 為、且過點橢圓;
(2)與雙曲線有相同的漸近線,且過點的雙曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左、右焦點分別是,Q是橢圓外的動點,滿足.點是線段與該橢圓的交點,點T是的中點.
(Ⅰ)設(shè)為點的橫坐標(biāo),證明;
(Ⅱ)求點T的軌跡的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的右焦點為,直線與軸交于點,若(其中為坐標(biāo)原點).
(I)求橢圓的方程;
(II)設(shè)是橢圓上的任意一點,為圓的任意一條直徑(、為直徑的兩個端點),求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com