(2013•宜賓一模)若(1-2x)2013=a0+a1x+…+a2013x2013(x∈R),則
a1
2
+
a2
2
+…+
a2013
2
=
-1
-1
分析:利用賦值法求出a0,a0+a1+…+a2013的值,然后求解
a1
2
+
a2
2
+…+
a2013
2
的值.
解答:解:因為(1-2x)2013=a0+a1x+…+a2013x2013(x∈R),
當x=0時,a0=1;當x=1時a0+a1+…+a2013=-1,
所以
a1
2
+
a2
2
+…+
a2013
2
=-
a0
2
+
a0
2
+
a1
2
+
a2
2
+…+
a2013
2
=-1.
故答案為:-1.
點評:本題考查二項式定理的應用,賦值法的應用,注意整體思想的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•宜賓一模)設函數(shù)f(x)=1-ex的圖象與x軸相交于點P,則曲線在點P的切線方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•宜賓一模)復數(shù)z=
3+4i
1+2i
在復平面內對應的點位于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•宜賓一模)設Sn為等比數(shù)列{an}的前n項和,27a2+a5=0,則
S5
S2
的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•宜賓一模)已知曲線y=
1
8
x2
的一條切線的斜率為
1
2
,則切點的縱坐標為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•宜賓一模)已知函數(shù)f(x)=sin(
π
2
-x)cosx-sinx•cos(π+x).
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,若A為銳角,且f(A)=1,BC=2,B=
π
3
,求AC邊的長.

查看答案和解析>>

同步練習冊答案