【題目】田忌和齊王賽馬是歷史上有名的故事,設(shè)齊王的三匹馬分別為A1,A2,A3;田忌的三匹馬分別為B1,B2,B3;三匹馬各比賽一次,勝兩場者獲勝,雙方均不知對方的馬出場順序.

(1)若這六匹馬比賽優(yōu)、劣程度可以用不等式表示:A1>B1>A2>B2>A3>B3,則田忌獲勝的概率是多大?

(2)若這六匹馬比賽優(yōu)、劣程度可以用不等式表示:A1>B1>A2>B2>B3>A3,則田忌獲勝的概率是多大?

【答案】(1) (2)

【解析】試題分析:列出齊王與田忌賽馬的所有情況,利用古典概型求概率即可.

試題解析:

不妨設(shè)齊王的三匹馬出場次序定為A1A2A3,則田忌的馬出場次序的基本事件空間:{B1B2B3,B1B3B2,B2B1B3,B2B3B1,B3B1B2,B3B2B1}.

(1)田忌贏齊王的三匹馬的出場次序為B3B1B2,則田忌獲勝的概率是.

(2)田忌贏齊王的三匹馬的出場次序為B3B1B2,B2B1B3,則田忌獲勝的概率是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某同學用“描點法”畫函數(shù)在區(qū)間上的圖象時,列表并填入了部分數(shù)據(jù),如下表:

(1)請將上表數(shù)據(jù)補充完整,并在給出的直角坐標系中,畫出在區(qū)間上的圖象;

(2)利用函數(shù)的圖象,直接寫出函數(shù)上的單調(diào)遞增區(qū)間;

(3)將圖象上所有點向左平移個單位長度,得到的圖象,若

圖象的一個對稱中心為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐V-ABC中,平面VAB平面ABC, VAB為等邊三角形,ACBCAC=BC=,O,M分別為AB,VA的中點。

(I)求證:VB//平面MOC;

II)求證:平面MOC平面VAB;

(III)求三棱錐V-ABC的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x)滿足f(x﹣2)=f(x+2),且當x∈[﹣2,0]時,f(x)=3x﹣1,則f(9)=(
A.﹣2
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在無窮數(shù)列中,,對于任意,都有,,設(shè),記使得成立的的最大值為

)設(shè)數(shù)列,,,,,寫出,,的值.

)若為等比數(shù)列,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某教育機構(gòu)隨機抽查某校20個班級,調(diào)查各班關(guān)注漢字聽寫大賽的學生人數(shù),根據(jù)所得數(shù)據(jù)的莖葉圖,5為組距將數(shù)據(jù)分組成[0,5),[5,10),[10,15),[15,20),[20,25),[25,30),[30,35),[35,40],所作的頻率分布直方圖如圖所示,則原始莖葉圖可能是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們知道:“心有靈犀”一般是對人的心理活動非常融洽的一種描述,它也可以用數(shù)學來定義:甲、乙兩人都在{1,2,3,4,5,6}中說一個數(shù),甲說的數(shù)記為a,乙說的數(shù)記為b,若|a﹣b|≤1,則稱甲、乙兩人“心有靈犀”,由此可以得到甲、乙兩人“心有靈犀”的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構(gòu)認為該事件在一段時間沒有發(fā)生大規(guī)模群體感染的標準為連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例的數(shù)據(jù),一定符合該標準的是____.(填序號)

甲地:總體均值為3,中位數(shù)為4

乙地:總體均值為1,總體方差大于0

丙地:中位數(shù)為2,眾數(shù)為3

丁地:總體均值為2,總體方差為3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)矩形ABCD,以A、B為左右焦點,并且過C、D兩點的橢圓和雙曲線的離心率之積為(
A.
B.2
C.1
D.條件不夠,不能確定

查看答案和解析>>

同步練習冊答案