【題目】如圖,在三棱柱中,側(cè)面是菱形,,.
(1)若是線段的中點(diǎn),求證:平面平面;
(2)若、、分別是線段、、的中點(diǎn),求證:直線平面.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】
(1)證明平面,然后利用面面垂直的判定定理可證明出平面平面;
(2)連接,由中位線的性質(zhì)可得出,利用線面平行的判定定理可證明出直線平面,同理可得出平面,由面面平行的判定定理得出平面平面,由此可得出直線平面.
(1)連接,在中,,為中點(diǎn),所以,
由于側(cè)面是菱形,則,,所以,為等邊三角形,為的中點(diǎn),,
而,所以平面,
而平面,所以平面平面;
(2)如下圖所示,連接,
在中,、分別為、的中點(diǎn),所以,
而平面,平面,所以平面.
同理,,在三棱柱中,,,
而平面,平面,所以平面.
而,、平面,所以平面平面.
又平面,所以直線平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“垛積術(shù)”(隙積術(shù))是由北宋科學(xué)家沈括在《夢(mèng)溪筆談》中首創(chuàng),南宋數(shù)學(xué)家楊輝、元代數(shù)學(xué)家朱世杰豐富和發(fā)展的一類數(shù)列求和方法,有菱草垛、方垛、芻童垛、三角垛等等,某倉(cāng)庫(kù)中部分貨物堆放成如圖所示的“菱草垛”:自上而下,第一層1件,以后每一層比上一層多1件,最后一層是n件,已知第一層貨物單價(jià)1萬(wàn)元,從第二層起,貨物的單價(jià)是上一層單價(jià)的.若這堆貨物總價(jià)是萬(wàn)元,則n的值為( )
A. 7B. 8C. 9D. 10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】電子計(jì)算機(jī)誕生于20世紀(jì)中葉,是人類最偉大的技術(shù)發(fā)明之一.計(jì)算機(jī)利用二進(jìn)制存儲(chǔ)信息,其中最基本單位是“位(bit)”,1位只能存放2種不同的信息:0或l,分別通過(guò)電路的斷或通實(shí)現(xiàn).“字節(jié)(Byte)”是更大的存儲(chǔ)單位,1Byte=8bit,因此1字節(jié)可存放從00000000(2)至11111111(2)共256種不同的信息.將這256個(gè)二進(jìn)制數(shù)中,所有恰有相鄰兩位數(shù)是1其余各位數(shù)均是0的所有數(shù)相加,則計(jì)算結(jié)果用十進(jìn)制表示為
A. 254B. 381C. 510D. 765
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是我國(guó)2008年至2014年生活垃圾無(wú)害化處理量(單位:億噸)的折線圖.
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量.
附注:
參考數(shù)據(jù):,,
,≈2.646.
參考公式:相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (, 為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),若直線與曲線沒(méi)有公共點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三棱柱的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為2,是的中點(diǎn).
(1)在線段上是否存在一點(diǎn),使得平面平面,若存在指出點(diǎn)在線段上的位置,若不存在,請(qǐng)說(shuō)明理由;
(2)求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)求的單調(diào)遞增區(qū)間;
(2)當(dāng)的圖像剛好與軸相切時(shí),設(shè)函數(shù),其中,求證:存在極小值且該極小值小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,,內(nèi)的頻率之比為.
(Ⅰ)求這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;
(Ⅱ)用分層抽樣的方法在區(qū)間內(nèi)抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任意
抽取2件產(chǎn)品,求這2件產(chǎn)品都在區(qū)間內(nèi)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com