已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=1,S11=33.
(1)求{an}的通項(xiàng)公式;
(2)設(shè),求證:數(shù)列{bn}是等比數(shù)列,并求其前n項(xiàng)和Tn

(1);(2).

解析試題分析:解題思路:(1)利用方程思想,用表示,解得,即得通項(xiàng)公式;(2)利用證明等比數(shù)列,用等比數(shù)列求和公式進(jìn)行求和.規(guī)律總結(jié):等差數(shù)列、等比數(shù)列的已知量要注意利用方程思想,即的方程組.
試題解析:(1),解得,
;         
(2), ,
于是數(shù)列是以為首項(xiàng),為公比的等比數(shù)列;
其前項(xiàng)的和 .       
考點(diǎn):1.等差數(shù)列;2.等比數(shù)列..

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在等比數(shù)列中,,且,,成等差數(shù)列.
(1)求;
(2)令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知an + 1 = 2Sn + 2 (n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在an與an + 1之間插入n個(gè)數(shù),使這n + 2個(gè)數(shù)組成一個(gè)公差為dn的等差數(shù)列.
①在數(shù)列{dn}中是否存在三項(xiàng)dm,dk,dp (其中m,k,p成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項(xiàng),若不存在,說(shuō)明理由;
②求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列中,求數(shù)列的通項(xiàng)公式及

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前100項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在等比數(shù)列中,已知
(1)求數(shù)列的通項(xiàng)公式.
(2)若分別為等差數(shù)列的第3項(xiàng)和第5項(xiàng),試求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列{an}前三項(xiàng)的和為-3,前三項(xiàng)的積為8.
(1) 求等差數(shù)列{an}的通項(xiàng)公式;
(2) 若數(shù)列{an}單調(diào)遞增,求數(shù)列{an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如果數(shù)列滿足:,則稱數(shù)列階“歸化數(shù)列”.
(1)若某4階“歸化數(shù)列”是等比數(shù)列,寫出該數(shù)列的各項(xiàng);
(2)若某11階“歸化數(shù)列”是等差數(shù)列,求該數(shù)列的通項(xiàng)公式;
(3)若為n階“歸化數(shù)列”,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

等差數(shù)列中,已知,則=     .

查看答案和解析>>

同步練習(xí)冊(cè)答案