已知圓M的方程為:x2+y2-2x-2y-6=0,以坐標原點為圓心的圓N與圓M相切.
(1)求圓N的方程;
(2)圓N與x軸交于E、F兩點,圓內(nèi)的動點D使得|DE|、|DO|、|DF|成等比數(shù)列,求·的取值范圍;
(3)過點M作兩條直線分別與圓N相交于A、B兩點,且直線MA和直線MB的傾斜角互補,試判斷直線MN和AB是否平行?請說明理由
圓M的方程可整理為:(x-1)2+(y-1)2=8,故圓心M(1,1),半徑R=2.
(1)圓N的圓心為(0,0),
因為|MN|=<2,所以點N在圓M內(nèi),
故圓N只能內(nèi)切于圓M.
設其半徑為r.
因為圓N內(nèi)切于圓M,
所以有:|MN|=R-r,
即=2-r,解得r=.
所以圓N的方程為
x2+y2=2.
(2)由題意可知:E(-,0),F(xiàn)(,0).
設D(x,y),由|DE|、|DO|、|DF|成等比數(shù)列,
得|DO|2=|DE|×|DF|,
即:×
=x2+y2,
整理得:x2-y2=1.
而=(--x,-y),
=(-x,-y),·
=(--x)(-x)+(-y)(-y)=x2+y2-2=2y2-1,由于點D在圓N內(nèi),故有,由此得y2<,所以·∈[-1,0).
(3)因為直線MA和直線MB的傾斜角互補,故直線MA和直線MB的斜率存在,且互為相反數(shù),設直線MA的斜率為k,則直線MB的斜率為-k.故直線MA的方程為
y-1=k(x-1),
直線MB的方程為
y-1=-k(x-1),
由,
得(1+k2)x2+2k(1-k)x+(1-k)2-2=0.
因為點M在圓N上,故其橫坐標x=1一定是該方程的解,
可得xA=,
同理可得:xB=,
所以kAB==
=
=1=kMN.
所以,直線AB和MN一定平行
解析
科目:高中數(shù)學 來源: 題型:解答題
設平面直角坐標系中,設二次函數(shù)的圖象與兩坐標軸有三個交點,經(jīng)過這三個交點的圓記為C.求:
(Ⅰ)求實數(shù)b 的取值范圍;
(Ⅱ)求圓C 的方程;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
過點Q 作圓C:的切線,切點為D,且QD=4
(1)求的值
(2)設P是圓C上位于第一象限內(nèi)的任意一點,過點P作圓C的切線l,且l交x軸于點A,交y 軸于點B,設,求的最小值(O為坐標原點)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(15分)已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個圓.
(1)求實數(shù)m的取值范圍;
(2)求該圓半徑r的取值范圍;
(3)求圓心的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
已知,分別是雙曲線的左、右焦點,過點且垂直于 軸的直線與雙曲線交于,兩點,若是鈍角三角形,則該雙曲線離心率的取值范圍是
A. | B. |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知點,點是⊙:上任意兩個不同的點,且滿足,設為弦的中點.
(1)求點的軌跡的方程;
(2)試探究在軌跡上是否存在這樣的點:它到直線的距離恰好等于到點的距離?若存在,求出這樣的點的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com