精英家教網 > 高中數學 > 題目詳情

已知拋物線的準線與雙曲線交于兩點,點為拋物線的焦點,若為直角三角形,則雙曲線的離心率是(   )

A. B. C.2 D.3 

B

解析試題分析:拋物線的準線為,它與雙曲線交于兩點,則坐標為,拋物線的焦點,因為為直角三角形,則有,從而有,,因此,故選擇B.
考點:圓錐曲線的性質.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知直線及圓
(1) 若直線l與圓C相切,求a的值;
(2) 若直線l與圓C相交于A,B兩點,且弦AB的長為,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓M的方程為:x2+y2-2x-2y-6=0,以坐標原點為圓心的圓N與圓M相切.
(1)求圓N的方程;
(2)圓N與x軸交于E、F兩點,圓內的動點D使得|DE|、|DO|、|DF|成等比數列,求·的取值范圍;
(3)過點M作兩條直線分別與圓N相交于A、B兩點,且直線MA和直線MB的傾斜角互補,試判斷直線MN和AB是否平行?請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:解答題


(本小題12分)
已知橢圓C的左右焦點坐標分別是(-1,0),(1,0),離心率,直線與橢圓C交于不同的兩點M,N,以線段MN為直徑作圓P。
(1)求橢圓C的方程;
(2)若圓P恰過坐標原點,求圓P的方程;

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

點P在正方體ABCD﹣A1B1C1D1的底面ABCD所在平面上,E是A1A的中點,且∠EPA=∠D1PD,則點P的軌跡是(  )

A.直線B.圓C.拋物線D.雙曲線

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

已知F是拋物線y2=x的焦點,A、B是該拋物線上的兩點,|AF|+|BF|=3,則線段AB
的中點到y軸的距離為
A.      B.1     C.      D.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

已知是拋物線的焦點,是該拋物線上的兩點.若線段的中點到軸的距離為,則 ( 。

A.2 B. C.3 D.4

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

若雙曲線的離心率為,則其漸近線的斜率為(    )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

已知雙曲線的漸近線方程為,則以它的頂點為焦點,焦點為頂點的橢圓的離心率等于(  )

A. B. C. D.1

查看答案和解析>>

同步練習冊答案