【題目】如圖,在空間直角坐標(biāo)系中,已知正四棱錐P-ABCD的所有棱長(zhǎng)均為6,正方形ABCD的中心為坐標(biāo)原點(diǎn)O,AD,BC平行于x軸,AB、CD平行于y軸,頂點(diǎn)Pz軸的正半軸上,點(diǎn)MN分別在PA,BD上,且.

1)若,求直線(xiàn)MNPC所成角的大小;

2)若二面角A-PN-D的平面角的余弦值為,求λ的值.

【答案】12

【解析】

寫(xiě)出圖中各點(diǎn)坐標(biāo),

1)求出向量,由向量夾角得出異面直線(xiàn)所成的角;

2)求出平面和平面的法向量,由法向量夾角的余弦值的絕對(duì)值等于已知二面角的余弦值可求得

依題意知,,,.

設(shè),.

,知,

,

所以,,

,,,

從而,.

1)若,則,,

所以,

所以.

又因,

所以,

故直線(xiàn)MNPC所成角的大小為.

2)連結(jié)AC,易知平面PBD.

故平面PBD的一個(gè)法向量為.

設(shè)平面PAN的一個(gè)法向量為,

.

又因?yàn)?/span>,

所以

不妨取,則,,

所以.

因?yàn)槎娼?/span>A-PN-D的平面角的余弦值為.

所以

整理得,解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我國(guó)南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》一書(shū)中,用如圖所示的三角形(楊輝三角)解釋了二項(xiàng)和的乘方規(guī)律.右邊的數(shù)字三角形可以看作當(dāng)n依次取0,12,3,…時(shí)展開(kāi)式的二項(xiàng)式系數(shù),相鄰兩斜線(xiàn)間各數(shù)的和組成數(shù)列.例:,,….

1)寫(xiě)出數(shù)列的通項(xiàng)公式(結(jié)果用組合數(shù)表示),無(wú)需證明;

2)猜想,與的大小關(guān)系,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x-1+ (a∈R,e為自然對(duì)數(shù)的底數(shù)).且曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)平行于x軸.

(1)求a的值;

(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家正積極推行垃圾分類(lèi)工作,教育部辦公廳等六部門(mén)也發(fā)布了《關(guān)于在學(xué)校推進(jìn)生活垃圾分類(lèi)管理工作的通知》.《通知》指出,到2020年底,各學(xué)校生活垃圾分類(lèi)知識(shí)普及率要達(dá)到100%某市教育主管部門(mén)據(jù)此做了哪些活動(dòng)最能促進(jìn)學(xué)生進(jìn)行垃圾分類(lèi)的問(wèn)卷調(diào)查(每個(gè)受訪(fǎng)者只能在問(wèn)卷的4個(gè)活動(dòng)中選擇一個(gè))如圖是調(diào)查結(jié)果的統(tǒng)計(jì)圖,以下結(jié)論正確的是(   )

A.回答該問(wèn)卷的受訪(fǎng)者中,選擇的(2)和(3)人數(shù)總和比選擇(4)的人數(shù)多

B.回該問(wèn)卷的受訪(fǎng)者中,選擇校園外宣傳的人數(shù)不是最少的

C.回答該問(wèn)卷的受訪(fǎng)者中,選擇(4)的人數(shù)比選擇(2)的人數(shù)可能多30

D.回答該問(wèn)卷的總?cè)藬?shù)不可能是1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四面體A-BCD中,已知平面平面BCD為正三角形,為等腰直角三角形,其中C為直角頂點(diǎn),E,F分別為校AC,AD的中點(diǎn).

1)求證:平面BEF;

2)求證:平面ACD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象與直線(xiàn)3個(gè)交點(diǎn),則實(shí)數(shù)a的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是正方形,AE平面ABCD,PDAE,PDAD2EA2G,F,H分別為BEBP,PC的中點(diǎn).

1)求證:平面ABE平面GHF

2)求直線(xiàn)GH與平面PBC所成的角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校準(zhǔn)備采用導(dǎo)師制成立培養(yǎng)各學(xué)科全優(yōu)尖子生培優(yōu)小組,設(shè)想培優(yōu)小組中,每1名學(xué)生需要配備2名理科教師和2名文科教師做導(dǎo)師;設(shè)想培優(yōu)小組中,每1名學(xué)生需要配備3名理科教師和1名文科教師做導(dǎo)師.若學(xué),F(xiàn)有14名理科教師和9名文科教師積極支持,則兩培優(yōu)小組能夠成立的學(xué)生人數(shù)和最多是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】嫦娥四號(hào)任務(wù)經(jīng)過(guò)探月工程重大專(zhuān)項(xiàng)領(lǐng)導(dǎo)小組審議,通過(guò)并且正式開(kāi)始實(shí)施,如圖所示.假設(shè)“嫦娥四號(hào)”衛(wèi)星將沿地月轉(zhuǎn)移軌道飛向月球后,在月球附近一點(diǎn)變軌進(jìn)入以月球球心為一個(gè)焦點(diǎn)的橢圓軌道繞月飛行,之后衛(wèi)星在點(diǎn)第二次變軌進(jìn)入仍以為一個(gè)焦點(diǎn)的橢圓軌道繞月飛行.若用分別表示橢圓軌道的焦距,用分別表示橢圓軌道的長(zhǎng)軸長(zhǎng),則下列關(guān)系中正確的是( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案