【題目】假設(shè)平面點集具有性質(zhì):(1)任意三點不共線;(2)任意兩點距離各不相等.對于中兩點,若存在點使得,則稱的一條“中邊”;對于中三點、,若、都是的中邊,則稱的“中邊三角形”.求最小的,使得任意具有性質(zhì)(1)和(2)的元平面點集中必存在中邊三角形.

【答案】6

【解析】

的所有中邊染成紅色,其他邊染成藍色.

時,根據(jù)拉姆賽定理知,

一定存在同色三角形,該三角形一定有中邊,一定是中邊三角形.

以下具有性質(zhì)(1)、(2)的五元點集不存在中邊三角形:

假設(shè)五個點、、、在圓周上依逆時針的次序排列,

則點、、兩兩的距離互不相同,且、、為中邊,但是不存在中邊三角形.

對于少于五個點的情況,只要在前面的例子中刪去若干個點,仍然不存在中邊三角形.

所以最小的,使得任意具有性質(zhì)(1)和(2)的元平面點集中必存在中邊三角形.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中, 平面,側(cè)面是正方形,點為棱的中點,點、分別在棱上,且

(1)證明:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)、分別是橢圓的左、右焦點.

(1)若是該橢圓上的一個動點,求的最大值與最小值.

(2)是否存在過點的直線與橢圓交于不同的兩點,使得?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)滿足:(1);(2);(3)時,.大小關(guān)系

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】手機作為客戶端越來越為人們所青睞,通過手機實現(xiàn)衣食住行消費已經(jīng)成為一種主要的消費方式.在某市,隨機調(diào)查了200名顧客購物時使用手機支付的情況,得到如下的2×2列聯(lián)表,已知從使用手機支付的人群中隨機抽取1人,抽到青年的概率為.

(I)根據(jù)已知條件完成2×2列聯(lián)表,并根據(jù)此資料判斷是否有99.5%的把握認為“市場購物用手機支付與年齡有關(guān)”?

2×2列聯(lián)表:

青年

中老年

合計

使用手機支付

120

不使用手機支付

48

合計

200

(Ⅱ)現(xiàn)采用分層抽樣的方法從這200名顧客中按照“使用手機支付”和“不使用手機支付”抽取一個容量為10的樣本,再從中隨機抽取3人,求這三人中“使用手機支付”的人數(shù)的分布列及期望.

附:

0.05

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若二次函數(shù)f(x)=4x2-2(t-2)x-2t2-t+1在區(qū)間[-1,1]內(nèi)至少存在一個值m,使得f(m)>0,則實數(shù)t的取值范圍( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三棱錐的三視圖如圖所示,.

1)求該三棱錐的表面積;

2)求該三棱錐內(nèi)切球的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),,數(shù)列的前項和,點)均在函數(shù)的圖像上.

(1)求數(shù)列的通項公式;

(2)設(shè),是數(shù)列的前項和,求滿足)的最大正整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,三個內(nèi)角所對的邊分別為,滿足.

(1) 求角的大。

(2),求的值.(其中

查看答案和解析>>

同步練習冊答案