【題目】已知,若關(guān)于的方程恰好有個不相等的實數(shù)解,則實數(shù)的取值范圍為( )

A. B. C. D.

【答案】C

【解析】

化簡可得,

當(dāng)時,f′(x),上單調(diào)遞增;

當(dāng)時,f′(x)上單調(diào)遞增,在上單調(diào)遞減;作出函數(shù)圖象如圖:

所以上有極大值f()=

設(shè)t=f(x),

當(dāng)t時,方程t=f(x)有1個解,

當(dāng)t=時,方程t=f(x)有2個解,

當(dāng)0t時,方程t=f(x)有3個解,

當(dāng)t=0時,方程t=f(x)有1個解,

當(dāng)t0時,方程m=f(x)有0個解,

則方程f2(x)﹣3mf(x)=0等價為t2﹣3mt=0,

等價為方程t2﹣3mt=(t﹣m)=0有兩個不同的根t=m,或t=2m,

要使關(guān)于x的方程f2(x)﹣3mf(x)=0恰好有4個不相等的實數(shù)根,

,

m的取值范圍是

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解高三學(xué)生的心理健康狀況,某校心理健康咨詢中心對該校高三學(xué)生的睡眠狀況進(jìn)行抽樣調(diào)查,隨機抽取了50名男生和50名女生,統(tǒng)計了他們進(jìn)入高三后的第一個月平均每天睡眠時間,得到如下頻數(shù)分布表.規(guī)定:“平均每天睡眠時間大于等于8小時”為“睡眠充足”,“平均每天睡眠時間小于8小時”為“睡眠不足”.

高三學(xué)生平均每天睡眠時間頻數(shù)分布表

睡眠時間(小時)

[5,6)

[6,7)

[7,8)

[8,9)

[9,10)

男生(人)

4

18

10

12

6

女生(人)

2

20

16

8

4

(Ⅰ)請將下面的列聯(lián)表補充完整:

睡眠充足

睡眠不足

合計

男生(人)

32

女生(人)

12

總計

100

(Ⅱ)根據(jù)已完成的2×2列聯(lián)表,判斷是否有90%的把握認(rèn)為“睡是否充足與性別有關(guān)”?

附:參考公式

P(K2≥k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.636

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上,且周期為2的函數(shù)滿足,若函數(shù)有3個零點,則實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名射擊運動員進(jìn)行射擊比賽,甲的中靶概率為0.8,乙的中靶概率為0.9,求下列事件的概率:

1)兩人都中靶;

2)恰好有一人中靶;

3)兩人都脫靶;

4)至少有一人中靶.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人獨立地解決同一問題,甲解出此問題的概率是,乙解出此問題的概率是.求:

1)甲、乙都解出此問題的概率;

2)甲、乙都未解出此問題的概率;

3)甲、乙恰有一人解出此問題的概率;

4)至少有一人解出此問題的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)fx)的最小值為1,且f0)=f2)=3

1)求fx)的解析式;

2)若fx)在區(qū)間[2aa+1]上不單調(diào),求實數(shù)a的取值范圍;

3)在區(qū)間[1,1]上,yfx)的圖象恒在y2x+2m+1的圖象上方,試確定實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)當(dāng)時,解關(guān)于的不等式;

(2)若對任意,都存在,使得不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:52,54,54,56,56,56,55,55,55,55.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加6后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是(  )

A. 眾數(shù) B. 平均數(shù)

C. 中位數(shù) D. 標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司擬推出某種意外傷害險,每位參保人交付元參保費,出險時可獲得萬元的賠付,已知一年中的出險率為,現(xiàn)有人參保.

1)求保險公司獲利在(單位:萬元)范圍內(nèi)的概率(結(jié)果保留小數(shù)點后三位);

2)求保險公司虧本的概率.(結(jié)果保留小數(shù)點后三位)

附:.

查看答案和解析>>

同步練習(xí)冊答案