【題目】設(shè)函數(shù),其中.
(Ⅰ)當(dāng)為偶函數(shù)時,求函數(shù)的極值;
(Ⅱ)若函數(shù)在區(qū)間上有兩個零點,求的取值范圍.
【答案】(Ⅰ)極小值,極大值;(Ⅱ)或
【解析】
(Ⅰ)根據(jù)偶函數(shù)定義列方程,解得.再求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)零點列表分析導(dǎo)函數(shù)符號變化規(guī)律,即得極值,(Ⅱ)先分離變量,轉(zhuǎn)化研究函數(shù),,利用導(dǎo)數(shù)研究單調(diào)性與圖象,最后根據(jù)圖象確定滿足條件的的取值范圍.
(Ⅰ)由函數(shù)是偶函數(shù),得,
即對于任意實數(shù)都成立,
所以.
此時,則.
由,解得.
當(dāng)x變化時,與的變化情況如下表所示:
0 | 0 | ||||
↘ | 極小值 | ↗ | 極大值 | ↘ |
所以在,上單調(diào)遞減,在上單調(diào)遞增.
所以有極小值,有極大值.
(Ⅱ)由,得. 所以“在區(qū)間上有兩個零點”等價于“直線與曲線,有且只有兩個公共點”.
對函數(shù)求導(dǎo),得.
由,解得,.
當(dāng)x變化時,與的變化情況如下表所示:
0 | 0 | ||||
↘ | 極小值 | ↗ | 極大值 | ↘ |
所以在,上單調(diào)遞減,在上單調(diào)遞增.
又因為,,,,
所以當(dāng)或時,直線與曲線,有且只有兩個公共點.
即當(dāng)或時,函數(shù)在區(qū)間上有兩個零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著“北京八分鐘”在韓國平昌冬奧會驚艷亮相,冬奧會正式進入了北京周期,全社會對冬奧會的熱情空前高漲.
(1)為迎接冬奧會,某社區(qū)積極推動冬奧會項目在社區(qū)青少年中的普及,并統(tǒng)計了近五年來本社區(qū)冬奧項目青少年愛好者的人數(shù)(單位:人)與時間(單位:年),列表如下:
依據(jù)表格給出的數(shù)據(jù),是否可用線性回歸模型擬合與的關(guān)系,請計算相關(guān)系數(shù)并加以說明(計算結(jié)果精確到0.01).
(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式,參考數(shù)據(jù).
(2)某冰雪運動用品專營店為吸引廣大冰雪愛好者,特推出兩種促銷方案.
方案一:每滿600元可減100元;
方案二:金額超過600元可抽獎三次,每次中獎的概率同為 ,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折. v
兩位顧客都購買了1050元的產(chǎn)品,并且都選擇第二種優(yōu)惠方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;
②如果你打算購買1000元的冰雪運動用品,請從實際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在四棱錐中,平面.,,.點是與的交點,點在線段上且.
(1)證明:平面;
(2)求直線與平面所成角的正弦值;
(3)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線過點且與直線垂直,直線與軸交于點,點與點關(guān)于軸對稱,動點滿足.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點的直線與軌跡相交于兩點,設(shè)點,直線的斜率分別為,問是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】團體購買公園門票,票價如下表:
購票人數(shù) | 1~50 | 51~100 | 100以上 |
門票價格 | 13元/人 | 11元/人 | 9元/人 |
現(xiàn)某單位要組織其市場部和生產(chǎn)部的員工游覽該公園,若按部門作為團體,選擇兩個不同的時間分別購票游覽公園,則共需支付門票費為1290元;若兩個部門合在一起作為一個團體,同一時間購票游覽公園,則需支付門票費為990元,那么這兩個部門的人數(shù)之差為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上海市旅游節(jié)剛落下帷幕,在旅游節(jié)期間,甲、乙、丙三位市民顧客分別獲得一些景區(qū)門票的折扣消費券,數(shù)量如表1,已知這些景區(qū)原價和折扣價如表2(單位:元).
表1:
數(shù)量 | 景區(qū)1 | 景區(qū)2 | 景區(qū)3 |
甲 | 0 | 2 | 2 |
乙 | 3 | 0 | 1 |
丙 | 4 | 1 | 0 |
表2:
門票 | 景區(qū)1 | 景區(qū)2 | 景區(qū)3 |
原價 | 60 | 90 | 120 |
折扣后價 | 40 | 60 | 80 |
(1)按照上述表格的行列次序分別寫出這三位市民獲得的折扣消費券數(shù)量矩陣A和三個景區(qū)的門票折扣后價格矩陣B;
(2)利用你所學(xué)的矩陣知識,計算三位市民各獲得多少元折扣?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了為期一年的“弘揚傳統(tǒng)文化,閱讀經(jīng)典名著”活動. 活動后,為了解閱讀情況,學(xué)校統(tǒng)計了甲、乙兩組各10名學(xué)生的閱讀量(單位:本),統(tǒng)計結(jié)果用莖葉圖記錄如下,乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以a表示.
(Ⅰ)若甲組閱讀量的平均值大于乙組閱讀量的平均值,求圖中a的所有可能取值;
(Ⅱ)將甲、乙兩組中閱讀量超過15本的學(xué)生稱為“閱讀達人”. 設(shè),現(xiàn)從所有的“閱讀達人”里任取2人,求至少有1人來自甲組的概率;
(Ⅲ)記甲組閱讀量的方差為. 若在甲組中增加一個閱讀量為10的學(xué)生,并記新得到的甲組閱讀量的方差為,試比較,的大小.(結(jié)論不要求證明)
(注:,其中為數(shù)據(jù)的平均數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓與拋物線的一個公共點,且橢圓與拋物線具有一個相同的焦點.
(1)求橢圓及拋物線的方程;
(2)設(shè)過且互相垂直的兩動直線,與橢圓交于兩點,與拋物線交于兩點,求四邊形面積的最小值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com