【題目】已知x=﹣3,x=1是函數(shù)f(x)=sin(ωx+φ)(ω>0)的兩個相鄰的極值點,且f(x)在x=﹣1處的導(dǎo)數(shù)f'(﹣1)>0,則f(0)=(
A.0
B.
C.
D.

【答案】D
【解析】解:∵x=1,x=﹣3是函數(shù)f(x)=sin(ωx+φ)(ω>0)兩個相鄰的兩個極值點,

∴f(x)的周期T═2×(1+3)=8,∴ω= ,

∵f(x)在x=﹣1處的導(dǎo)數(shù)f'(﹣1)>0,∴函數(shù)f(x)在[﹣3,1]遞增,

∴f(1)=1,∴ω+φ=2kπ+ ,φ=2kπ+ ,

f(0)=sin( +2kπ)= ,

故選:D.

【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識,掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面A1B1C1 , AA1=AC=BC=1,∠ACB=90°,D是A1B1的中點,F(xiàn)是BB1上的點,AB1 , DF交于點E,且AB1⊥DF,則下列結(jié)論中不正確的是(
A.CE與BC1異面且垂直
B.AB1⊥C1F
C.△C1DF是直角三角形
D.DF的長為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(a,b)是區(qū)域 內(nèi)的任意一點,則使函數(shù)f(x)=ax2﹣2bx+3在區(qū)間[ ,+∞)上是增函數(shù)的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的左右焦點分別為F1 , F2 , P為雙曲線右支上一點(異于右頂點),△PF1F2的內(nèi)切圓與x軸切于點(2,0),過F2作直線l與雙曲線交于A,B兩點,若使|AB|=b2的直線l恰有三條,則雙曲線離心率的取值范圍是(
A.(1,
B.(1,2)
C.( ,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1Cl中,M,N分別為CC1 , A1B1的中點.
(I)證明:直線MN∥平面CAB1
(II)BA=BC=BB1 , CA=CB1 , CA⊥CB1 , ∠ABB1=60°,求平面AB1C和平面A1B1C1所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科技公司生產(chǎn)一種手機加密芯片,其質(zhì)量按測試指標(biāo)劃分為:指標(biāo)大于或等于70為合格品,小于70為次品.現(xiàn)隨機抽取這種芯片共120件進行檢測,檢測結(jié)果統(tǒng)計如表:

測試指標(biāo)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

芯片數(shù)量(件)

8

22

45

37

8

已知生產(chǎn)一件芯片,若是合格品可盈利400元,若是次品則虧損50元.
(Ⅰ)試估計生產(chǎn)一件芯片為合格品的概率;并求生產(chǎn)3件芯片所獲得的利潤不少于700元的概率.
(Ⅱ)記ξ為生產(chǎn)4件芯片所得的總利潤,求隨機變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+φ)+2sin2x(|φ|< )的圖象過點( , ).
(1)求函數(shù)f(x)在[0, ]的最小值;
(2)設(shè)角C為銳角,△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,若x=C是曲線y=f(x)的一條對稱軸,且△ABC的面積為2 ,a+b=6,求邊c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg,乙材料1kg,用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg,乙材料0.3kg,用3個工時,生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex+2ax.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上的最小值為0,求a的值;
(3)若對于任意x≥0,f(x)≥ex恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案