【題目】數(shù)列的各項均為正數(shù),且的前項和是.
(1)若是遞增數(shù)列,求的取值范圍;
(2)若,且對任意,都有,證明: .
【答案】(1);(2)證明見解析.
【解析】試題分析: 由題意先證明,然后利用數(shù)學(xué)歸納法結(jié)合條件證明結(jié)果由已知先證明數(shù)列是遞減數(shù)列,由,求出范圍,分別證明、時的情況是否成立
解析:(1) 由a2>a1a1+-1>a1,
得0<a1<2;①
又由a3>a2a2+-1>a20<a2<20<a1+-1<2,
得1<a1<2,②
由①②,得1<a1<2.
下面用數(shù)學(xué)歸納法證明:
當(dāng)1<a1<2時,1<an<2對任意n∈N*恒成立.
(ⅰ)當(dāng)n=1時,1<a1<2成立;
(ⅱ)假設(shè)當(dāng)n=k(k≥1,k∈N*)時,1<ak<2成立,
則當(dāng)n=k+1時,ak+1=ak+-1∈[2-1,2)(1,2).
綜上,可知1<an<2對任意n∈N*恒成立.
于是an+1-an=-1>0,即{an}是遞增數(shù)列.
所以a1的取值范圍是1<a1<2.
(2)證明 因為a1>2,可用數(shù)學(xué)歸納法證明:an>2對任意n∈N*恒成立.
于是an+1-an=-1<0,即{an}是遞減數(shù)列.
在Sn≥na1- (n-1)中,令n=2,
得2a1+-1=S2≥2a1-,解得a1≤3,
故2<a1≤3.
下證:①當(dāng)時,
Sn≥na1- (n-1)恒成立.
事實上,當(dāng)時,
由于于是
再證:②當(dāng)時不合題意.
事實上,當(dāng)時,設(shè)an=bn+2,
則由可得
得得,
于是數(shù)列{bn}的前n項和,
故Sn=2n+Tn<2n+3=na1+(2-a1)n+3.(*)
令則由(*)式得,
只要n充分大,就有Sn<na1- (n-1),這與Sn≥na1- (n-1)矛盾.
所以<a1≤3不合題意.
綜上,有2<a1≤.
于是 ,因為 故
故數(shù)列{bn}的前n項和,
所以Sn=2n+Tn<2n+1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和,數(shù)列是正項等比數(shù)列,且,.
(1)求數(shù)列和的通項公式;
(2)記,是否存在正整數(shù),使得對一切,都有成立?若存在,求出M的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x+1)-mx(mR)。(1)若m>0,討論f(x)的單調(diào)性;(2)令g(x)=f(x-1)+(2m+1)x+n,若g(x)有兩個零點,,求證: <
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在處取得極值,對, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中),(其中為自然對數(shù)的底數(shù)).
(1)若曲線在處的切線與直線垂直,求的單調(diào)區(qū)間和極值;
(2)若對任意,總存在使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a>0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)證明:對任意x∈[1,+∞),有f(x)≤2x-a2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在歲到歲的人群中隨機(jī)調(diào)查了人,并得到如圖所示的頻率分布直方圖,在這人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計結(jié)果如圖所示:
年齡 | 不支持“延遲退休年齡政策”的人數(shù) |
(1)由頻率分布直方圖,估計這人年齡的平均數(shù);
(2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過的前提下,認(rèn)為以歲為分界點的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?
45歲以下 | 45歲以上 | 總計 | |
不支持 | |||
支持 | |||
總計 |
附:
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的離心率與雙曲線的離心率互為倒數(shù),且過點.
(1)求橢圓C的方程;
(2)過作兩條直線與圓相切且分別交橢圓于M、N兩點.
① 求證:直線MN的斜率為定值;
② 求△MON面積的最大值(其中O為坐標(biāo)原點).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com