【題目】如圖,在平面直角坐標系xOy中,橢圓C(ab0)經(jīng)過點(2,0),橢圓C上三點A,M,B與原點O構(gòu)成一個平行四邊形AMBO.

1)求橢圓C的方程;

2)若點B是橢圓C左頂點,求點M的坐標;

3)若A,M,B,O四點共圓,求直線AB的斜率.

【答案】1y21;(2M(1,±);(3±

【解析】

(1)將點代入橢圓1求解即可.

(2)根據(jù)平行四邊形AMBO可知AMBO,且AMBO2.再設點M(x0,y0),則A(x02,y0),代入橢圓C求解即可.

(3) 因為A,M,B,O四點共圓,所以平行四邊形AMBO是矩形,且OAOB,再聯(lián)立直線與橢圓的方程,結(jié)合韋達定理代入·x1x2y1y20求解即可.

1)因為橢圓1(ab0)過點,

所以a2,1,解得b21,所以橢圓C的方程為y21.

2)因為B為左頂點,所以B (2,0).

因為四邊形AMBO為平行四邊形,所以AMBO,且AMBO2.

設點M(x0,y0),則A(x02,y0).

因為點M,A在橢圓C上,所以解得所以M(1,±).

3)因為直線AB的斜率存在,所以設直線AB的方程為ykxm,A(x1,y1),B(x2,y2).

消去y,得(4k21)x28kmx4m240,

則有x1x2,x1x2.

因為平行四邊形AMBO,所以(x1x2,y1y2).

因為x1x2,所以y1y2k(x1x2)2mk·2m,所以M(,).

因為點M在橢圓C上,所以將點M的坐標代入橢圓C的方程,化得4m24k21.①

因為A,M,B,O四點共圓,所以平行四邊形AMBO是矩形,且OAOB,

所以·x1x2y1y20.

因為y1y2(kx1m)(kx1m)k2x1x2km(x1x2)m2,

所以x1x2y1y20,化得5m24k24.②

由①②解得k2,m23,此時△>0,因此k±.

所以所求直線AB的斜率為±.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,試討論的單調(diào)性;

2)對任意時,都有成立,試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)若在曲線上的一點的切線方程為軸,求此時的值;

)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù))).

1)若是函數(shù)的極值點,求實數(shù)的值并討論的單調(diào)性;

2)若,函數(shù)有兩個零點,,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為2,過右焦點和短軸一個端點的直線的斜率為為坐標原點.

(Ⅰ)求橢圓的方程;

(Ⅱ)設斜率為的直線與橢圓相交于兩點,記面積的最大值為,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖(如圖①)、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖(如圖②),則下列結(jié)論中不一定正確的是( )

注:90后指1990年及以后出生,80后指1980~1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%

C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解某高校全校學生的閱讀情況,隨機調(diào)查了200名學生每周閱讀時間(單位:小時)并繪制如圖所示的頻率分布直方圖.

1)求這200名學生每周閱讀時間的樣本平均數(shù)和中位數(shù)的值精確到0.01);

2)為查找影響學生閱讀時間的因素,學校團委決定從每周閱讀時間為,的學生中抽取9名參加座談會.你認為9個名額應該怎么分配?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且x0fx)的極值點.

1)求fx)的最小值;

2)是否存在實數(shù)b,使得關(guān)于x的不等式exbx+fx)在(0+∞)上恒成立?若存在,求出b的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】七巧板是中國古代勞動人民的發(fā)明,其歷史至少可以追溯到公元前一世紀,后清陸以湉《冷廬雜識》卷一中寫道近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余18世紀,七巧板流傳到了國外,被譽為東方魔板,至今英國劍橋大學的圖書館里還珍藏著一部《七巧新譜》.完整圖案為一正方形(如圖):五塊等腰直角三角形、一塊正方形和一塊平行四邊形,如果在此正方形中隨機取一點,那么此點取自陰影部分的概率是(

A.B.C.D.

查看答案和解析>>

同步練習冊答案